Acknowledgement
Supported by : Chungbuk National University
References
- S. Asmussen, Applied Probability and Queues, Second Edition, Springer, 2003.
- J. Bae and S. Kim, The stationary workload of the G/M/1 queue with impatient customers, Queueing Syst. 64 (2010), no. 3, 253-265. https://doi.org/10.1007/s11134-009-9159-0
- F. Baccelli, P. Boyer, and G. Hebuterne, Single server queues with impatient customers, Adv. in Appl. Probab. 16 (1984), no. 4, 887-905. https://doi.org/10.2307/1427345
- F. Baccelli and G. Hebuterne, On queues with impatient customers, Performance '81 (Amsterdam, 1981), 159-179, North-Holland, Amsterdam-New York, 1981.
- D. Y. Barrer, Queueing with impatient customers and indifferent clerks, Oper. Res. 5 (1957), 644-649. https://doi.org/10.1287/opre.5.5.644
- D. Y. Barrer, Queueing with impatient customers and ordered service, Oper. Res. 5 (1957), 650-656. https://doi.org/10.1287/opre.5.5.650
- O. J. Boxma and P. R. de Waal, Multiserver queues with impatient customers, In: The Fundamental Role of Teletraffic in the Evolution of Telecommunications Networks (Proc. ITC 14), 743-756, North-Holland, Amsterdam, 1994.
- A. Brandt and M. Brandt, On the M(n)/M(n)/s queues with impatient calls, Performance Evaluation 35 (1999), no. 1-2, 1-18. https://doi.org/10.1016/S0166-5316(98)00042-X
- A. Brandt and M. Brandt, Asymptotic results and a Markovian approximation for the M(n)/M(n)/s+GI system, Queueing Syst. 41 (2002), no. 1-2, 73-94. https://doi.org/10.1023/A:1015781818360
- D. J. Daley, General customer impatience in the queue GI/G/1, J. Appl. Probability 2 (1965), 186-205. https://doi.org/10.2307/3211884
- P. D. Finch, Deterministic customer impatience in the queueing system GI/M/1, Biometrika 47 (1960), 45-52. https://doi.org/10.1093/biomet/47.1-2.45
- B. V. Gnedenko and I. N. Kovalenko, Introduction to Queueing Theory, Israel Program for Scientific Translations, Jerusalem, 1968.
- O. M. Jurkevic, On the investigation of many-server queueing systems with bounded waiting time (in Russian), Izv. Akad. Nauk SSSR Techniceskaja Kibernetika 5 (1970), 50-58.
- O. M. Jurkevic, On many-server systems with stochastic bounds for the waiting time (in Russian), Izv. Akad. Nauk SSSR Techniceskaja Kibernetika 4 (1971), 39-46.
- A. G. de Kok and H. C. Tijms, A queueing system with impatient customers, J. Appl. Probab. 22 (1985), no. 3, 688-696. https://doi.org/10.2307/3213871
- A. Movaghar, On queueing with customer impatience until the beginning of service, Queueing Syst. 29 (1998), no. 2-4, 337-350. https://doi.org/10.1023/A:1019196416987
- W. Rudin, Real and Complex Analysis, Third Edition, McGraw-Hill, 1987.
- R. E. Stanford, Reneging phenomena in single channel queues, Math. Oper. Res. 4 (1979), no. 2, 162-178. https://doi.org/10.1287/moor.4.2.162
- R. E. Stanford, On queues with impatience, Adv. in Appl. Probab. 22 (1990), no. 3, 768-769. https://doi.org/10.2307/1427473
- R. W. Wolff, Stochastic Modeling and the Theory of Queues, Prentice Hall, Englewood Cliffs, NJ, 1989.
- W. Xiong, D. Jagerman, and T. Altiok, M/G/1 queue with deterministic reneging times, Performance Evaluation 65 (2008), no. 3-4, 308-316. https://doi.org/10.1016/j.peva.2007.07.003
Cited by
- MAP/M/c and M/PH/c queues with constant impatience times vol.82, pp.3-4, 2016, https://doi.org/10.1007/s11134-015-9455-9
- Discrete-time renewal input queue with balking and multiple working vacations vol.10, pp.3, 2015, https://doi.org/10.1080/17509653.2014.954651
- Analysis of the loss probability in the M/G/1+G queue vol.80, pp.4, 2015, https://doi.org/10.1007/s11134-015-9449-7
- Multi-class M/PH/1 queues with deterministic impatience times vol.33, pp.1, 2017, https://doi.org/10.1080/15326349.2016.1197778