DOI QR코드

DOI QR Code

Analysis of Quality factor and Effective inductance of Inductor for RF Integrated Circuits in 90nm CMOS Technology

RFIC 설계에 응용 가능한 90nm 공정 기반 인덕터의 Quality factor 및 Effective inductance 분석

  • Jang, Seong-Yong (Dept. of Electronics Engineering, Chungnam National University) ;
  • Shin, Jong-Kwan (Dept. of Electronics Engineering, Chungnam National University) ;
  • Kwon, Hyuk-Min (Dept. of Electronics Engineering, Chungnam National University) ;
  • Kwon, Sung-Kyu (Dept. of Electronics Engineering, Chungnam National University) ;
  • Sung, Seung-Yong (Dept. of Electronics Engineering, Chungnam National University) ;
  • Hwang, Sun-Man (Dept. of Electronics Engineering, Chungnam National University) ;
  • Jang, Jae-Hyung (Dept. of Electronics Engineering, Chungnam National University) ;
  • Lee, Ga-Won (Dept. of Electronics Engineering, Chungnam National University) ;
  • Lee, Hi-Deok (Dept. of Electronics Engineering, Chungnam National University)
  • Received : 2012.02.15
  • Published : 2013.05.25

Abstract

In this paper, octagonal inductors for RFIC designs was fabricated with 90nm CMOS Technology to compare its quality factor and the effective inductance as functions of radius and number of turn. The quality factor decreases as the inner radius and the number of metal turned increase. However, the effective inductance increases with the increasing the inner radius and the number of metal turned. Therefore, the inductor structure should be decided according to the relative importance of Q-factor and inductance.

본 논문에서는 RFIC 설계에 응용 가능한 인덕터의 Quality factor 및 Effective inductance를 비교 분석하기 위해 Octagonal 인덕터를 90nm CMOS 공정을 이용하여 제작하였다. 내부반경을 설계변수로 갖는 인덕터의 경우 내부반경이 증가함에 따라 Quality factor가 감소하고 Effective inductance의 값이 증가하였다. 회전수를 설계변수로 갖는 인덕터의 경우 금속의 회전수가 증가함에 따라 Quality factor의 값이 감소하고 Effective inductance의 값이 증가하는 것을 확인하였다. 따라서 RFIC 회로 설계에 있어서 인덕터의 구조는 Q-factor 및 inductance 각각의 상대적 중요도에 따라 선택 되어져야 된다고 할 수 있다.

Keywords

References

  1. A. M. Niknejad, "Analysis, Design, and Optimization of Spiral Inductors and Transformers for Si RF IC's", IEEE Journal of Solid State Circuits, vol. 33, no. 10, pp. 1470-1481, Oct 1998. https://doi.org/10.1109/4.720393
  2. C. Patrick, S. Simon Wong, "Physical Modeling of Spiral Inductors on Silicon", IEEE Transactions on Electron Devices, vol. 47, no. 3, pp. 560-568, Mar. 2000. https://doi.org/10.1109/16.824729
  3. 김성균, 안성준, 김병성, "$0.13{\mu}m $RF CMOS 공정 용 스케일러블 인덕터 모델링", 전자공학회 논문지 제46권 TC편 제1호, pp.94-101, 2009년, 1월.
  4. H. W. Chiu, Y. S. Lin, K. Liu and S. S. Lu, "Temperature and Substrate Effects in Monolothic RF Inductors on Silicon With $6{\mu}m$-Thick Top Metal for RFIC Applications," IEEE Transactions on Semiconductor Manufacturing, Vol. 19, no. 3, pp. 316-330, Aug. 2006. https://doi.org/10.1109/TSM.2006.879416
  5. 차준영, 차지용, 이성현, "On-Wafer 패드 및 금속 배선의 De-embedding이 RF 트랜지스터 특성에 미치는 영향", RF 집적회로 기술 워크샵, 제 8회, pp.417, 2008.
  6. T. E. Kolding, "A four-step method for de-embedding gigahertz on-wafer CMOS measurements", IEEE Transactions on Electron Devices, vol. 47, no. 4, pp. 734-740, Apr. 2000. https://doi.org/10.1109/16.830987
  7. M.C.A.M. Koolen, J.A.M. Geelen, and M.P.J.G. Versleijen, "An improved de-embedding technique for on-wafer high-frequency characterization", in Proc. IEEE Bipolar Circuits and Techno logy Meeting, pp. 188-191 Sept. 1991.
  8. Y. Cao, R. A. Groves, X. Huang, N. D. amdmer, J. O. Plouchart, R A Wachnik, T J King, Chenming Hu, "Frequency Independent Equivalent Circuit Model for On-Chip Spiral Inductors", IEEE Journal of Solid State Circuits, Vol. 38, no. 3, pp. 419-426, Mar. 2003. https://doi.org/10.1109/JSSC.2002.808285
  9. N. Burghartz, D. Edelstein, M. Soyuer, "RF Circuit Design Aspects of Spiral Inductors on Silicon", IEEE Journal of Solid State Circuits, vol. 33, no. 12, pp. 2028-2034, Dec. 1998. https://doi.org/10.1109/4.735544

Cited by

  1. A Design of Voltage Controlled Oscillator and High Speed 1/4 Frequency Divider using 65nm CMOS Process vol.51, pp.11, 2014, https://doi.org/10.5573/ieie.2014.51.11.107