DOI QR코드

DOI QR Code

0.18 ㎛ CMOS 공정을 이용한 저 전력 1 Ms/s 12-bit 2 단계 저항 열 방식 DAC

A Low-Power 1 Ms/s 12-bit Two Step Resistor String Type DAC in 0.18 ㎛ CMOS Process

  • 유명섭 (성균관대학교 정보통신대학) ;
  • 박형구 (성균관대학교 정보통신대학) ;
  • 김홍진 (성균관대학교 정보통신대학) ;
  • 이동수 (성균관대학교 정보통신대학) ;
  • 이성호 (한국전자부품연구원) ;
  • 이강윤 (성균관대학교 정보통신대학)
  • Yoo, MyungSeob (College of Information and Communication Engineering, Sungkyunkwan University) ;
  • Park, HyungGu (College of Information and Communication Engineering, Sungkyunkwan University) ;
  • Kim, HongJim (College of Information and Communication Engineering, Sungkyunkwan University) ;
  • Lee, DongSoo (College of Information and Communication Engineering, Sungkyunkwan University) ;
  • Lee, SungHo (Korea Electronics Technology Institute) ;
  • Lee, KangYoon (College of Information and Communication Engineering, Sungkyunkwan University)
  • 투고 : 2013.02.18
  • 발행 : 2013.05.25

초록

본 논문은 무선 센서분야를 위한 1MS/s rate의 저 전력 12-bit 2단계 저항 열 DAC를 제시하고 있다. 2단계 저항 열 구조를 채택함으로써 복잡함을 줄이고, 소비 전력을 최소화 하고 변환속도를 증가 시킬 수 있었다. 이 칩은 $0.18{\mu}m$ CMOS 공정에서 제작 되었으며, Die 면적은 $0.76{\mu}m{\times}0.56{\mu}m$ 이다. 1.8V의 공급 전압으로부터 측정된 전력 소비는 1.8 mW 이다. 샘플링 주파수가 1MHz 이하에서 측정된 동적 동작범위(Spurious-Free Dynamic Range: SFDR)은 70dB 이다.

A low-power 12-bit resistor string DAC for wireless sensor applications is presented. Two-step approach reduces complexity, minimizes power consumption and area, and increases speed. This chip is fabricated in 0.18-${\mu}m$ CMOS and the die area is $0.76mm{\times}0.56mm$. The measured power consumption is 1.8mW from the supply voltage of 1.8V. Measured SFDR(Spurious-Free Dynamic Range) is 70dB when the sampling frequency is less than 1 MHz.

키워드

참고문헌

  1. P. Hendriks, "Specifying communication DACs," IEEE Spectrum,vol.34,pp.58-69,Jul.1997. https://doi.org/10.1109/MSPEC.1997.609817
  2. M. Pelgrom, "A 10-b 50-MHz CMOS D/A Converter with 75-$\Omega$ Buffer," IEEEJ. Solid -State Circuits ,vol.25,no.6,pp.1347-1352,Dec.1990. https://doi.org/10.1109/4.62178
  3. A. Abrial et al., "A 27-MHz digital-to-analog video processor," IEEE J. Solid-State Circuits, vol. SSC-23, pp. 1358-1369, Dec. 1988.
  4. D. Johns and K. Martin, Analog Integrated Circuit Design. New York :Wiley,1997.
  5. I. Knausz, et.al., "A Low Power, Scalable, DAC Architecture for Liquid Crystal Display Drivers", IEEE J. Solid-State Circuits, Vol.44, No.9, pp.2402-2410, Sep., 2009. https://doi.org/10.1109/JSSC.2009.2025341
  6. C. Lin, et. al., "A 12bit 2.9GS/s DAC with IM3<-60dBc Beyond 1GHz in 65nm CMOS," IEEE J. Solid-State Circuits, Vol.44, No.12, pp.3285-3293, Dec., 2009. https://doi.org/10.1109/JSSC.2009.2032624
  7. C., Lu, et.al., "A 10b Resistor-Resistor-String DAC with Current Compensation for Compact LCD Driver ICs", in ISSCC Dig. Tech Papers, Feb., 2011, pp.318-319.
  8. Y. Tang, et.al., "A 14 bit 200 MS/s DAC With SFDR > 78 dBc, IM3< -83 dBc and NSD< -163 dBm/Hz Across the Whole Nyquist Band Enabled by Dynamic-Mismatch Mapping", IEEE J. Solid-State Circuits, Vol.46, No.6, pp.1371-1381, June, 2011. https://doi.org/10.1109/JSSC.2011.2126410
  9. G. Cauwenberghs, "A micropower CMOS algorithmic A/D/A converter," IEEE Trans. Circuits Syst., vol. 42, no. 11, pp. 913-919, Nov. 1995. https://doi.org/10.1109/81.477202
  10. M. Bell, "An LCD column driver using a switch capacitor DAC," IEEE J. Solid-State Circuits, vol. SC-40, no. 12, pp. 2756-2765, Dec. 2005.
  11. Analog Devices. [Online]. Available: http://www.analog.com/en/digital-to-analog-converters/da-converters/AD5611/products/product.html
  12. S. Mortezapour et al., "Design of low-power ROM-less direct digital frequency synthesizer using nonlinear digital-to-analog converter," IEEE J. Solid-State Circuits, vol. 34, no. 10, pp. 1350-1359, Oct. 1999. https://doi.org/10.1109/4.792601
  13. F.Wang et al., "A quasi-passive CMOS pipeline D/A converter," IEEE J. Solid-State Circuits, vol. 24, no. 6, pp. 1752-1755, Dec. 1989. https://doi.org/10.1109/4.45017
  14. M. Moussavi et al., "A differential bipolar quasi-passive cyclic digital-to-analog converter with 4.416 MSps conversion rate and -77 dB THD," in Proc. IEEE Custom Integrated Circuits Conf., 2001, pp. 161-164.
  15. A. Heubi et al., "Micro power "relative precision" 13 bits cyclic RSD A/D converter," in Proc. Int. Symp. Low Power Electronics and Design, Aug. 1996, pp. 253-257.
  16. A. Chih-Wen Lu "A 10-bit Resistor-Floa ting-Resistor-String DAC (RFR-DAC) for High Color-Depth LCD Driver ICs," IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 47, NO. 10, OCTOBER 2012.