DOI QR코드

DOI QR Code

Characterization of Photosynthetic Rates by Tomato Leaf Position

토마토 엽위별 광합성 특성 분석

  • Kim, Sung Eun (Department of Plant and Food Sciences, Sangmyung University) ;
  • Lee, Moon Young (Department of Plant and Food Sciences, Sangmyung University) ;
  • Kim, Young Shik (Department of Plant and Food Sciences, Sangmyung University)
  • 김성은 (상명대학교 식물식품공학과) ;
  • 이문영 (상명대학교 식물식품공학과) ;
  • 김영식 (상명대학교 식물식품공학과)
  • Received : 2012.07.12
  • Accepted : 2012.12.18
  • Published : 2013.04.30

Abstract

The photosynthetic rates according to leaf positions in tomato plants were investigated in relation to leaf age and flowering rate. In the experiment investigating the diurnal change of photosynthetic rates, three leaves below the 4th cluster was checked every hour from 2 hours before sunrise and 3 hours after sunset. It was checked twice with the replication of 3 plants. The photosynthetic rate increased sharply for 1 hour right after sunrise and remained steady until 2 hours before sunset. This trend can be applied to determine the irrigation schedule. In the experiment investigating the photosynthetic rates according to leaf positions, it three leaves below each clusters from 1st to 4th cluster were checked. Flowering rate was also investigated. The photosynthetic rates showed a decreasing tendency steadily after flowers bloomed fully, regardless of the leaf position. It seems to be because the leaves below the cluster with fully-bloom flowers lost their activities. This result suggests the flowering rate or the position of flower has deep relation with the photosynthetic rates of the concerned leaves. From the results the leaves under flowering cluster may be the good part to investigate the photosynthetic rate to evaluate the crop's activity, even the photosynthetic rates are different according to the position of clusters.

토마토 잎들의 엽위별 광합성 특성을 조사하고, 잎의 연령과 개화속도를 엽위별 광합성 특성과 비교분석하였다. 일중 광합성 속도 특성실험에서는 일출 전 2시간부터 일몰 후 3시간까지 1시간마다 4번째 화방의 하부엽 3매의 광합성 속도를 측정하였다. 3개체를 반복으로 총 2회 조사하였다. 토마토의 일중 광합성 속도는 일출 후 1시간 동안 급격히 증가한 후, 일몰 2시간 전까지 일정하게 유지되는 양상을 보여 급액의 시작과 마감시각을 결정하는데 적용할 수 있을 것으로 사료된다. 엽위별 광합성 속도 특성실험에서는 1화방부터 4화방까지 각 화방의 하부에 있는 본엽 3개씩을 대상으로 광합성 속도를 조사하였다. 또한 광합성 특성을 분석하는데 적용하기 위해 개화속도를 조사하였다. 광합성속도는 엽위에 관계없이 꽃이 만개하는 시기를 정점으로 지속적으로 감소하는 경향을 보였다. 이는 만개 이후에는 해당 화방 이하의 잎의 활력이 감소하고 생육단계가 노화단계로 이동하기 때문으로 사료된다. 따라서 토마토의 개화속도와 광합성 속도는 서로 밀접한 관련이 있는 것으로 나타났다. 연구결과, 생육단계(엽령)의 차이에 의해 각 화방별 광합성 속도는 차이가 있으나, 광합성 속도로 작물의 활력을 판단하려 할 때는 개화하고 있는 화방의 하부엽을 조사하는 것이 매우 효과적일 것으로 판단된다.

Keywords

References

  1. Abreu, P.E.P., C. Gary, and J.F. Meneses. 2001. Predicting tomato fruit setting in a cold mediterranean greenhouse. Acta Hort. 566:57-65.
  2. Albacete, A., C. Martinez-Andujar, M.E. Ghanem, M.J. Jsins, J. Cuartero, S. Lutts, I.C. Dodd, and F. Perez-Alfocea. 2009. Rootstock-mediated changes in xylem ionic and hormonal status are correlated with delayed leaf senescence, and increased leaf area and crop productivity in salinized tomato. Plant Cell Environ. 32:928-938. https://doi.org/10.1111/j.1365-3040.2009.01973.x
  3. Bänziger, M. and H.R. Lafitte. 1997. Efficiency of secondary traits for improving maize for low-nitrogen target environments. Crop Sci. 37:1110-1117. https://doi.org/10.2135/cropsci1997.0011183X003700040013x
  4. Blom, T.J. and Y. Zheng. 2009. The response of plant growth and leaf gas exchange to the speed of lamp movement in a greenhouse. Scientia Hort. 119:188-192. https://doi.org/10.1016/j.scienta.2008.07.014
  5. Buchanan-Wollaston, V. 1997. The molecular biology of leaf senescence. J. Exp. Bot. 48:181-199. https://doi.org/10.1093/jxb/48.2.181
  6. de Graaf, R. 2004. Tomato yield in a closed greenhouse and comparison with simulated yields in closed and conventional greenhouses. Acta Hort. 691:549-552.
  7. De Koning, A.N.M. 1994. Development and dry matter distribution in glasshouse tomato: A quantitative approach. PhD. Diss., Wageningen Univ., Wageningen, Netherlands.
  8. Echarte, L., S. Rothstein, and M. Tollenaar. 2008. The response of leaf photosynthesis and dry matter accumulation to nitrogen supply in an older and a newer maize hybrid. Crop Sci. 48:656-665. https://doi.org/10.2135/cropsci2007.06.0366
  9. Erley, G.S., T.F. Ambebe, M. Worku, M. Banziger, and W.J. Horst. 2010. Photosynthesis and leaf-nitrogen dynamics during leaf senescence of tropical maize cultivars in hydroponics in relation to N efficiency in the field. Plant Soil 330:313-328. https://doi.org/10.1007/s11104-009-0205-9
  10. Frantz, J.M. 2005. Acclimation of plant populations to shade: Photosynthesis, respiration, and carbon use efficiency. J. Amer. Soc. Hort. Sci. 130:918-927.
  11. Herrick, J.D. and R.B. Thomas. 2003. Leaf senescence and late-season net photosynthesis of sun and shade leaves of overstory sweetgum (Liquidambar styraciflua) grown in elevated and ambient carbon dioxide concentrations. Tree Physiol. 23:109-118. https://doi.org/10.1093/treephys/23.2.109
  12. Heuvelink, E. 1989. Influence of day and night temperature on the growth of young tomato plants. Scientia Hort. 38:11-22. https://doi.org/10.1016/0304-4238(89)90015-0
  13. Heuvelink, E. 2005. Tomatoes. CABI Publishing, Wallingford, UK.
  14. Jones, J.W., E. Dayan, P. Jones, I. Seginer, L.H. Allen, and I. Zipori. 1989. On-line computer control system for greenhouses under high radiation and temperature zones. Final report, BARD project US-871-74. Agric. Eng. Dep., Univ. of Florida, Gainesville.
  15. Jones, J.W., E. Dayan, L.H. Allen, H. Van Keulen, and H. Challa. 1991. A dynamic tomato growth and yield model (TOMGRO). Amer. Soc. Agricultural Biol. Eng. 34:663-672. https://doi.org/10.13031/2013.31715
  16. Jones, P., J.W. Jones, L.H. Allen, and J.W. Mishoe, Jr. 1984. Dynamic computer control of closed environemtal plant growth chambers: Dasign and Verification. Amer. Soc. Agricultural Biol. Eng. 27:879-888. https://doi.org/10.13031/2013.32889
  17. Johannes, S., B.L. McNeal, J.W. Jones, K.J. Boote, C.D. Stanley, and T.A. Obreza. 2000. Growth and canopy characteristics of field-grown tomato. Agron. J. 92:152-159. https://doi.org/10.2134/agronj2000.921152x
  18. Kim, S.E., S.Y. Sim, M.H. Lee, and Y.S. Kim. 2012. Appropriate daily last irrigation time in coir bag culture for tomato. J. Bio-Env. Con. 21:1-8.
  19. Lafitte, H.R. and G.O. Edmeades. 1994a. Improvement for tolerance to low soil nitrogen in tropical maize I. Selection criteria. Field Crops Res. 39:1-14. https://doi.org/10.1016/0378-4290(94)90066-3
  20. Lafitte, H.R. and G.O. Edmeades. 1994b. Improvement for tolerance to low soil nitrogen in tropical maize III. Variation in yield across environments. Field Crops Res. 39:27-38. https://doi.org/10.1016/0378-4290(94)90068-X
  21. Lorenz, H.P. and H.J. Wiebe. 1980. Effect of temperature on photosynthesis of lettuce adapted to different light and temperature conditions. Scientia Hort. 13:115-123. https://doi.org/10.1016/0304-4238(80)90075-8
  22. Magalhaes, J. R. and F.E. Wilcox. 1983. Tomato growth and mineral composition as influenced by nitrogen form and light intensity. J. Plant Nutr. 6:847-862. https://doi.org/10.1080/01904168309363151
  23. Nie, G.Y., S.P. Long, R.L. Garcia, B.A. Kimball, R.L. LaMorte, P.J. Pinter, Jr., G.W. Wall, and A.N. Webber. 1995. Effects of free-air $CO_2$ enrichment on the development of the photosynthetic apparatus in wheat, as indicated by changes in leaf proteins. Plant Cell Environ. 18:855-864. https://doi.org/10.1111/j.1365-3040.1995.tb00594.x
  24. Matsuda, R., A. Nakano, D.H. Ahn, K. Suzuki, K.I. Yasuba, and M. Takaichi. 2011. Growth characteristic and sink strength of fruit at different $CO_2$ concentrations in a Japanese and a Dutch tomato cultivar. Scientia Hort. 127:528-534. https://doi.org/10.1016/j.scienta.2010.12.009
  25. McNeal, B.L., J.M.S. Scholberg, J.W. Jones, C.D. Stanley, A.A. Csizin szky, and T.A. Obreza. 1995. Application of a greenhouse tomato growth model (TOMGRO) to field-grown tomato. Soil Crop Sci. Soc. Fla. Proc. 54:86-93.
  26. Mendez-Vigo, B., M. Teresa de Andres, M. Ramiro, J.M. Martinez-Zapater, and C. Alonso-Blanco. 2010. Temporal analysis of natural variation for the rate of leaf production and its relationship with flowering initiation in Arabidopsis thaliana. J. Exp. Bot. 61:1611-1623. https://doi.org/10.1093/jxb/erq032
  27. Naz, R.M.M., S. Muhannad, A. Hamid, and F. BibiI. 2012. Effect of boron on the flowering and fruiting of tomato. Sarhad J. Agric. 28:37-40.
  28. Pearson, M. and G. Brooks. 1995. The influence of elevated $CO_2$ on growth and age-related changes in leaf gas exchange. J. Exp. Bot. 46:1651-1659. https://doi.org/10.1093/jxb/46.11.1651
  29. Rural Development Adminstration (RDA). 2010. Regulation on crop growth survey. RDA, Suwon, Korea.
  30. Saito, T., T. Ariizumi, Y. Okabe, E. Asamizu, K. Hiwasa-Tanase, N. Fukuda, T. Mizoguchi, Y. Yamazaki, K. Aoki, and H. Ezura1. 2011. TOMATOMA: A novel tomato mutant database distributing micro-tom mutant collections. Plant Cell Physiol. 52:283-296. https://doi.org/10.1093/pcp/pcr004
  31. Santa-Cruz, A., M.M. Martinez-Rodriguez, F. Perez-Alfocea, R. Romero-Aranda, and M.C. Bolarin. 2002. The rootstock effect on the tomato salinity response depends on the shoot genotype. Plant Sci. 162:825-831. https://doi.org/10.1016/S0168-9452(02)00030-4
  32. Sattelmacher, B. and H. Marschner. 1978. Nitrogen nutrition and cytokinin activity in Solanum tuberosum. Plant Physiol. 42:185-189. https://doi.org/10.1111/j.1399-3054.1978.tb02545.x
  33. Sidaway-Lee, K., E.M. Josse, A. Brown, Y. Gan, K.J. Halliday, I.A. Graham, and S. Penfield. 2010. SPATULA links daytime temperature and plant growth rate. Current Biol. 20:1493-1497. https://doi.org/10.1016/j.cub.2010.07.028
  34. Sim, S.Y. and Y.S. Kim. 2009. Improvement of water and fertilizer use efficiency by daily last irrigation time for tomato perlite bag culture. J. Bio-Env. Con. 18:408-412.
  35. Stradiot, P. and P. Battistel. 2003. Improved plant management with localised crop heating and advice on distance in the Mediterranean climate. Acta Hort. 614:461-467.
  36. Takakura, T. and K.A. Jordan. 1971. Dynamic simulation of plant growth and environment in the greenhouse. Amer. Soc. Agricultural Eng. 14:964-971. https://doi.org/10.13031/2013.38432
  37. van Oosten, J.J. and R.T. Besford. 1995. Some relationships between the gas exchange, biochemistry and molecular biology of photosynthesis during leaf development of tomato plants after transfer to different carbon dioxide concentrations. Plant Cell Environ. 18:1253-1266. https://doi.org/10.1111/j.1365-3040.1995.tb00185.x
  38. Wagner, B.M. and E. Beck. 1993. Cytokinins in the perennial herb Urtica dioica L. as influenced by its nitrogen status. Planta 190:511-518.
  39. Ward, D.A. and J.A. Bunce. 1986. Novel evidence for a lack of water vapour saturation within the intercellular airspace of turgid leaves of mesophytic species. J. Experimental Bot. 37:504-516. https://doi.org/10.1093/jxb/37.4.504
  40. Worku, M. 2005. Genetic and crop-physiological basis of nitrogen efficiency in tropical maize: Field studies. Diss., Univ. of Hannover, Hannover, Germany.
  41. Worku, M., M. Bänziger, A. Schulte, G. Erley, D. Friesen, A.O. Diallo, and W.J. Horst. 2007. Nitrogen uptake and utilization in contrasting nitrogen efficient tropical maize hybrids. Crop Sci. 47:519-528. https://doi.org/10.2135/cropsci2005.05.0070