DOI QR코드

DOI QR Code

Heart-Model-Based Automated Method for Left Ventricular Measurements in Cardiac MR: Comparison with Manual and Semi-automated Methods

자동화 방식 모델 기반 좌심방 파라미터 측정법: 수동 및 반자동 방식과의 비교

  • Chae, Seung Hoon (Department of Radiology, Seoul National University Hospital) ;
  • Lee, Whal (Department of Radiology, Seoul National University Hospital) ;
  • Park, Eun-Ah (Department of Radiology, Seoul National University Hospital) ;
  • Chung, Jin Wook (Department of Radiology, Seoul National University Hospital)
  • 채승훈 (서울대학교병원 영상의학과) ;
  • 이활 (서울대학교병원 영상의학과) ;
  • 박은아 (서울대학교병원 영상의학과) ;
  • 정진욱 (서울대학교병원 영상의학과)
  • Received : 2013.05.14
  • Accepted : 2013.07.16
  • Published : 2013.09.30

Abstract

Purpose : To assess the effect of applying an automated heart model based measurements of left ventricle (LV) and compare with manual and semi-automated measurements at Cardiovascular MR Imaging. Materials and Methods: Sixty-two patients who underwent cardiac 1.5T MR imaging were included. Steady state free precession cine images of 20 phases per cardiac cycle were obtained in short axis views and both 2-chamber and 4-chamber views. Epicardial and endocardial contours were drawn in manual, automated, and semi-automated ways. Based on these acquired contour sets, the end-diastolic (ED) and end-systolic (ES) volumes, ejection fraction (EF), systolic volume (SV) and LV mass were calculated and compared. Results: In EDV and ESV, the differences among three measurement methods were not statistically significant (P = .399 and .145, respectively). However, in EF, SV, and LV mass, the differences were statistically significant (P=.001, <001, <001, respectively) and the measured value from automated method tend to be consistently higher than the values from other two methods. Conclusion: An automatic heart model-based method grossly overestimate EF, SV and LV mass compared with manual or semi-automated methods. Even though the method saves a considerable amount of efforts, further manual adjustment should be considered in critical clinical cases.

목적: 자기공명 심장영상을 이용한 좌심실 파라미터 측정에 있어, 자동화 방식을 적용하였을 경우에 나타나는 효과를 분석하고 이를 수동 및 반자동 방식을 적용했을 경우 나타나는 결과와 비교하였다. 대상과 방법: 1.5T 자기공명 심장영상 촬영을 시행한 62명의 환자를 대상으로, 심장 주기당 20상의 단축 항정상태 자유세차 동영상과 심첨2방 및 심첨4방 영상을 얻었다. 심내막 경계와 심외막 경계를 수동, 자동, 반자동 방식으로 각각 구하여 이를 바탕으로 이완말기와 수축말기 용적, 박출 계수, 일회 박출량, 좌심실 질량을 계산하고 각 방식간 평균값 차이를 일원분산분석법을 이용 통계적 분석하였다. 결과: 이완말기와 수축말기 용적의 경우에는 세 방식으로 측정한 결과는 통계적으로 유의하게 다르지 않았다. (P = .399 and .145). 그러나, 박출 계수, 일회 박출량, 좌심실 질량의 경우에는 통계적으로 유의하게 다르게 나타났으며 (P=.001, < 001, < 001) 자동화 방식으로 측정한 측정치가 다른 두 방식에 비해 일관되게 큰 결과치를 보였다. 결론: 자동화 방식을 적용하여 측정한 좌심실의 박출 계수, 일회 박출량, 좌심실 질량의 측정치는 수동, 반자동 방식에 비해 과장된 값을 나타낸다. 자동화 방식으로 많은 노력을 절감할 수 있으나, 임상적으로 민감한 케이스에 대해서는 이에 더하여 수동적 교정을 고려해야 할 것이다.

Keywords

References

  1. Levy D, Garrison RJ, Savage DD, Kannel WB, Castelli WP. Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. N Engl J Med 1990;322:1561-1566 https://doi.org/10.1056/NEJM199005313222203
  2. Kondo C, Caputo GR, Semelka R, Foster E, Shimakawa A, Higgins CB. Right and left ventricular stroke volume measurements with velocity-encoded cine MR imaging: in vitro and in vivo validation. AJR Am J Roentgenol 1991;157:9-16 https://doi.org/10.2214/ajr.157.1.2048544
  3. Koren MJ, Devereux RB, Casale PN, Savage DD, Laragh JH. Relation of left ventricular mass and geometry to morbidity and mortality in uncomplicated essential hypertension. Ann Intern Med 1991;114:345-352 https://doi.org/10.7326/0003-4819-114-5-345
  4. Rerkpattanapipat P, Mazur W, Link KM, Hundley WG. Assessment of cardiac function with MR imaging. Magn Reson Imaging Clin N Am 2003;11:67 https://doi.org/10.1016/S1064-9689(02)00021-1
  5. Francois CJ, Fieno DS, Shors SM, Finn JP. Left ventricular mass: manual and automatic segmentation of true fisp and flash cine MR images in dogs and pigs. Radiology 2004;230:389-395 https://doi.org/10.1148/radiol.2302020761
  6. Alfakih K, Reid S, Jones T, Sivananthan M. Assessment of ventricular function and mass by cardiac magnetic resonance imaging. Eur Radiol 2004;14:1813-1822
  7. Thiele H, Nagel E, Paetsch I, et al. Functional cardiac MR imaging with steady-state free precession (ssfp) significantly improves endocardial border delineation without contrast agents. J Magn Reson Imaging 2001;14:362-367 https://doi.org/10.1002/jmri.1195
  8. Bloomgarden DC, Fayad ZA, Ferrari VA, Chin B, Sutton MG, Axel L. Global cardiac function using fast breath-hold MRI: validation of new acquisition and analysis techniques. Magn Reson Med 2005;37:683-692
  9. Childs H, Ma L, Ma M, et al. Comparison of long and short axis quantification of left ventricular volume parameters by cardiovascular magnetic resonance, with ex-vivo validation. J Cardiovasc Magn Reson 2011;13:40 https://doi.org/10.1186/1532-429X-13-40
  10. Hautvast GL, Salton CJ, Chuang ML, Breeuwer M, O'Donnell CJ, Manning WJ. Accurate computer-aided quantification of left ventricular parameters: experience in 1555 cardiac magnetic resonance studies from the framingham heart study. Magn Reson Med 2012;67:1478-1486 https://doi.org/10.1002/mrm.23127
  11. Katz J, Milliken MC, Stray-Gundersen J, et al. Estimation of human myocardial mass with MR imaging. Radiology 1988;169:495-498 https://doi.org/10.1148/radiology.169.2.2971985
  12. Shapiro MD, Nieman K, Nasir K, et al. Utility of cardiovascular magnetic resonance to predict left ventricular recovery after primary percutaneous coronary intervention for patients presenting with acute ST-segment elevation myocardial infarction. Am J Cardiol 2007;100:211-216 https://doi.org/10.1016/j.amjcard.2007.02.079
  13. Dulce MC, Mostbeck GH, Friese KK, Caputo GR, Higgins CB. Quantification of the left ventricular volumes and function with cine MR imaging: comparison of geometric models with threedimensional data. Radiology 1993;188:371-376 https://doi.org/10.1148/radiology.188.2.8327680
  14. Vogel-Claussen J, Finn JP, Gomes AS, et al. Left ventricular papillary muscle mass: relationship to left ventricular mass and volumes by magnetic resonance imaging. J Comput Assist Tomogr 2006;30:426-432 https://doi.org/10.1097/00004728-200605000-00013