DOI QR코드

DOI QR Code

Power-Scalable, Sub-Nanosecond Mode-Locked Erbium-Doped Fiber Laser Based on a Frequency-Shifted-Feedback Ring Cavity Incorporating a Narrow Bandpass Filter

  • Vazquez-Zuniga, Luis Alonso (Laser Engineering and Applications Laboratory, Department of Electrical and Computer Engineering, Seoul National University) ;
  • Jeong, Yoonchan (Laser Engineering and Applications Laboratory, Department of Electrical and Computer Engineering, Seoul National University)
  • 투고 : 2013.03.08
  • 심사 : 2013.03.18
  • 발행 : 2013.04.25

초록

We present an all-fiberized power-scalable, sub-nanosecond mode-locked laser based on a frequency-shifted-feedback ring cavity comprised of an erbium-doped fiber, a downshifting acousto-optic modulator (AOM), and a bandpass filter (BPF). With the aid of the frequency-shifted feedback mechanism provided by the AOM and the narrow filter bandwidth of 0.45 nm, we generate self-starting, mode-locked optical pulses with a spectral bandwidth of ~0.098 nm and a pulsewidth of 432 to 536 ps. In particular, the output power is readily scalable with pump power while keeping the temporal shape and spectral bandwidth. This is obtained via the consolidation of bound pulse modes circulating at the fundamental repetition rate of the cavity. In fact, the consolidated pulses form a single-entity envelope of asymmetric Gaussian shape where no discrete internal pulses are perceived. This result highlights that the inclusion of the narrow BPF into the cavity is crucial to achieving the consolidated pulses.

키워드

참고문헌

  1. F. V. Kowalski, P. D. Hale, and S. J. Shattil, "Broadband continuous-wave laser," Opt. Lett. 13, 622-624 (1988). https://doi.org/10.1364/OL.13.000622
  2. D. J. Taylor, S. E. Harris, S. T. K. Nieh, and T. W. Hansch, "Electronic tuning of a dye laser using the acousto-optic filter," Appl. Phys. Lett. 19, 269-271 (1971). https://doi.org/10.1063/1.1653913
  3. O. G. Okhotnikov, "Multiwavelength picosecond frequencyshifted feedback laser with pulse control by a shaped-gain fiber amplifier," Opt. Lett. 23, 1459-1461 (1998). https://doi.org/10.1364/OL.23.001459
  4. A. Bellemare, M. Karásek, M. Rochette, S. LaRochelle, and M. Têtu, "Room temperature multifrequency erbium-doped fiber lasers anchored on the ITU frequency grid," J. Lightwave Technol. 18, 825-831 (2000). https://doi.org/10.1109/50.848393
  5. J.-N. Maran, S. LaRochelle, and P. Besnard, "Erbium-doped fiber laser simultaneously mode locked on more than 24 wavelengths at room temperature," Opt. Lett. 28, 2082-2084 (2003). https://doi.org/10.1364/OL.28.002082
  6. H. Sabert and E. Brinkmeyer, "Pulse generation in fiber lasers with frequency shifted feedback," J. Lightwave Technol. 12, 1360-1368 (1994). https://doi.org/10.1109/50.317522
  7. M. Romagnoli, S. Wabnitz, P. Franco, M. Midrio, L. Bossalini, and F. Fontana, "Role of dispersion in pulse emission from a sliding-frequency fiber laser," J. Opt. Soc. Am. B 12, 938-944 (1995). https://doi.org/10.1364/JOSAB.12.000938
  8. F. Fontana, L. Bossalini, P. Franco, M. Midrio, M. Romagnoli, and S. Wabnitz, "Self-starting sliding-frequency fiber soliton laser," Electron. Lett. 30, 321-322 (1994). https://doi.org/10.1049/el:19940198
  9. M. Romagnoli, S. Wabnitz, P. Franco, M. Midrio, F. Fontana, and G. E. Town, "Tunable erbium-ytterbium fiber sliding-frequency soliton laser," J. Opt. Soc. Am. B 12, 72-76 (1995). https://doi.org/10.1364/JOSAB.12.000072
  10. J. M. Sousa and O. G. Okhotnikov. "Short pulse generation and control in Er-doped frequency-shifted-feedback fibre lasers," Opt. Commun. 183, 227-241 (2000). https://doi.org/10.1016/S0030-4018(00)00871-3
  11. S. U. Alam and A. B. Grudinin, "Tunable picosecond frequency-shifted feedback fiber laser at 1550 nm," IEEE Photon. Technol. Lett. 16, 2012-2014 (2004). https://doi.org/10.1109/LPT.2004.831958
  12. L. Lefort, A. Albert, V. Couderc, and A. Barthelemy, "Highly stable 68-fs pulse generation from a stretched-pulse $Yb^{3+}$-doped fiber laser with frequency shifted feedback," IEEE Photon. Technol. Lett. 14, 1674-1676 (2002). https://doi.org/10.1109/LPT.2002.804678
  13. C. M. de Sterke and M. J. Steel, "Simple model for pulse formation in lasers with a frequency-shifting element and nonlinearity," Opt. Commun. 117, 469-474 (1995). https://doi.org/10.1016/0030-4018(95)00220-3
  14. L. A. Vazquez-Zuniga and Y. Jeong, "Super-broadband noise-like pulse erbium-doped fiber ring laser with a highly nonlinear fiber for Raman gain enhancement," IEEE Photon. Technol. Lett. 24, 1549-1551 (2012). https://doi.org/10.1109/LPT.2012.2208451
  15. L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, "Ultrashort-pulse fiber ring lasers," Appl. Phys. B 65, 277-294 (1997). https://doi.org/10.1007/s003400050273
  16. L. F. Mollenauer, J. P. Gordon, and S. G. Evangelides, "The sliding-frequency guiding filter: an improved form of soliton jitter control," Opt. Lett. 17, 1575-1577 (1992). https://doi.org/10.1364/OL.17.001575
  17. M. Nakazawa, E. Yoshida, and Y. Kimura, "Low threshold, 290-fs erbium-doped fiber laser with a nonlinear amplifying loop mirror pumped by InGaAsP laser-diodes," Appl. Phys. Lett. 59, 2073-2075 (1991). https://doi.org/10.1063/1.106134

피인용 문헌

  1. Study of a mode-locked erbium-doped frequency-shifted-feedback fiber laser incorporating a broad bandpass filter: Numerical results vol.322, 2014, https://doi.org/10.1016/j.optcom.2014.01.075
  2. Influences of the Filter Effect on Pulse Splitting in Passively Mode-Locked Fiber Laser with Positive Dispersion Cavity vol.19, pp.2, 2015, https://doi.org/10.3807/JOSK.2015.19.2.130
  3. Current Status and Prospects of High-Power Fiber Laser Technology (Invited Paper) vol.27, pp.1, 2016, https://doi.org/10.3807/KJOP.2016.27.1.001
  4. Study of a mode-locked erbium-doped frequency-shifted-feedback fiber laser incorporating a broad bandpass filter: Experimental results vol.306, 2013, https://doi.org/10.1016/j.optcom.2013.05.038