DOI QR코드

DOI QR Code

Strain-imposed External Cavity Tunable Lasers Operating for NIR Wavelength

  • Kim, Jun-Whee (School of Electrical Engineering and Graduate School of Cogno-Mechatronics Engineering, Pusan National University) ;
  • Kim, Kyung-Jo (School of Electrical Engineering and Graduate School of Cogno-Mechatronics Engineering, Pusan National University) ;
  • Son, Nam-Seon (School of Electrical Engineering and Graduate School of Cogno-Mechatronics Engineering, Pusan National University) ;
  • Oh, Min-Cheol (School of Electrical Engineering and Graduate School of Cogno-Mechatronics Engineering, Pusan National University)
  • 투고 : 2012.10.04
  • 심사 : 2012.11.16
  • 발행 : 2013.04.25

초록

For demonstrating widely tunable external cavity lasers operating for near-infrared (NIR) wavelength, a flexible polymer waveguide with an imbedded Bragg grating is incorporated. Due to the superior flexibility of the polymer material, the reflection wavelength of the Bragg grating is widely tunable by imposing tensile and compressive strains on the flexible Bragg grating. A third-order Bragg grating is formed on the device for facilitating the fabrication method. With a superluminescent laser diode as a gain medium of ECL, the tunable laser exhibited output power of -3 dBm and a tuning range of 32 nm.

키워드

참고문헌

  1. G. Gulsen, B. Xiong, O. Birgul, and O. Nalcioglu, "Design and implementation of a multifrequency near-infrared diffuse optical tomography system," J. Biomed. Opt. 11, 014020 (2006). https://doi.org/10.1117/1.2161199
  2. K. Sumimura, Y. Genda, T. Ohta, K. Itoh, and N. Nishizawa, "Quasi-supercontinuum generation using 1.06 $\mu m$ ultrashortpulse laser system for ultrahigh-resolution optical-coherence tomography," Opt. Lett. 35, 3631-3633 (2010). https://doi.org/10.1364/OL.35.003631
  3. M. Izzetoglu, S. C. Bunce, K. Izzetoglu, B. Onaral, and K. Pourrezaei, "Functional brain imaging using near-infrared technology," IEEE Eng. Med. Biol. Mag. 26, 38-46 (2007).
  4. M. Huang, Y. Zhou, and C. Chang-Hasnain, "A nanoelectromechanical tunable laser," Nat. Photon. 2, 180-184 (2008). https://doi.org/10.1038/nphoton.2008.3
  5. M. R. Weinberger, G. Langer, A. Pogantsch, A. Haase, E. Zojer, and W. Kern, "Continuously color-tunable rubber laser," Adv. Mater. 16, 130-133 (2004). https://doi.org/10.1002/adma.200305681
  6. H. Lim, J. F. de Boer, B.-H. Park, E.-C. Lee, R. Yelin, and S.-H. Yun, "Optical frequency domain imaging with a rapidly swept laser in the 815-870 nm range," Opt. Express 14, 5937-5944 (2006). https://doi.org/10.1364/OE.14.005937
  7. Y.-O. Noh, H.-J. Lee, J.-J. Ju, M.-S. Kim, S.-H. Oh, and M.-C. Oh, "Continuously tunable compact lasers based on thermo-optic polymer waveguides with Bragg gratings," Opt. Express 16, 18194-18201 (2008). https://doi.org/10.1364/OE.16.018194
  8. K.-H. Yoon, S.-H. Oh, K.-S. Kim, O.-K. Kwon, D.-K. Oh, Y.-O. Noh, and H.-J. Lee, "2.5-Gb/s hybridly integrated tunable external cavity laser using a superluminescent diode and a polymer Bragg reflectior," Opt. Express 18, 5556-5561 (2010). https://doi.org/10.1364/OE.18.005556
  9. K.-J. Kim, J.-W. Kim, M.-C. Oh, Y.-O. Noh, and H.-J. Lee, "Flexible polymer waveguide tunable lasers," Opt. Express 18, 8392-8399 (2010). https://doi.org/10.1364/OE.18.008392
  10. B. Wenger, N. Tetreault, M. E. Welland, and R. H. Friend, "Mechanically tunable conjugated polymer distributed feedback lasers," Appl. Phys. Lett. 97, 193303 (2010). https://doi.org/10.1063/1.3509405
  11. S. Doring, M. Kollosche, T. Rabe, J. Stumpe, and G. Kofod, "Electrically tunable polymer DFB laser," Adv. Mater. 23, 4265-4269 (2011). https://doi.org/10.1002/adma.201102465
  12. N.-S. Son, K.-J. Kim, J.-W. Kim, and M.-C. Oh, "Near-Infrared tunable lasers with polymer waveguide Bragg gratings," Opt. Express 20, 827-834 (2012). https://doi.org/10.1364/OE.20.000827
  13. L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley-Interscience Publication, 1995), Chapter 3.
  14. K.-J. Kim, J.-K. Seo, and M.-C. Oh, "Strain induced tunable wavelength filters based on flexible polymer waveguide Bragg reflector," Opt. Express 16, 1423-1430 (2008). https://doi.org/10.1364/OE.16.001423

피인용 문헌

  1. Characterization of a Wavelength-Tunable Fiber Laser Based on a Polymer Waveguide Bragg Grating Wavelength Filter vol.26, pp.6, 2015, https://doi.org/10.3807/KJOP.2015.26.6.306
  2. A widely tunable, dual-wavelength fiber laser incorporating two polymer waveguide Bragg gratings vol.10, pp.12, 2013, https://doi.org/10.1088/1612-2011/10/12/125105
  3. Two-Wavelength Lasers Based on Oversized Rib Polymer Waveguide Bragg Reflectors vol.25, pp.1, 2014, https://doi.org/10.3807/KJOP.2014.25.1.038