DOI QR코드

DOI QR Code

PSC 풍도슬래브에 부착된 내화패널의 내화특성에 관한 실험연구

Experimental Study on the Fire Proofing Characteristic of Fire Resistance Panel that it attaches to PSC Airpit-Slab

  • 이두성 ((주)홍지 기술연구소) ;
  • 배정 ((주)삼부토건 기술연구소) ;
  • 최헌 ((주)경원건축사 사무소 엔지니어링 연구소) ;
  • 민인기 ((주)도화엔지니어링)
  • 투고 : 2012.02.20
  • 심사 : 2013.03.07
  • 발행 : 2013.03.30

초록

본 연구에서는 터널에서 발생되는 화재로부터 구조물을 보호하기 위해 내화패널이 부착된 프리캐스트 PSC 슬래브의 내화성능을 조사하기 위해 내화실험이 수행되었다. 내화실험은 독일의 RABT(Richtlinien fur die Ausstatung und den Betrieb von stra${\beta}$entunneln) 화재시간-온도곡선을 적용하여 내화성능을 평가하는 것으로 하였다. ITA(2004)에서 제시하는 기준에 따라 내화성능 시험을 수행한 결과, 콘크리트의 손상을 판단하는 위치인 t=0mm의 최대온도는 $367^{\circ}C$로서 손상한계온도 $380^{\circ}C$(ITA 2004)이하였으며, 철근의 손상을 판단하는 위치인 t=25mm의 최대온도는 $239^{\circ}C$로서 손상 한계온도인 $250^{\circ}C$이하로 나타났다. 실험결과로부터, 25mm두께의 내화패널이 부착된 프리스트레스 슬래브 시험체는 내화성능을 가진 것으로 입증되었다.

In this Study, the performance of precast PSC slabs with fire resistance panel for fire resistance of the tunnel system was evaluated by experimentally. The fire test was performed in fire resistance (electric) furnace according to RABT(Richtlinien fur die Ausstatung und den Betrieb von stra${\beta}$entunneln) time heating temperature curve. The test results showed that the measured temperatures at the t=0 mm depth of PSC slab with precast fire resistance panel during a fire was maximum temperature $367^{\circ}C$, lower than $380^{\circ}C$ (ITA 2004), when damage occurs. Also, at the t=25 mm, the maximum temperature was $239^{\circ}C$, which was lower than the damage temperature of rebar, $250^{\circ}C$. From the results, the use of precast fire resistance panel (t=25 mm) improves fire resistance of PSC structures.

키워드

참고문헌

  1. Kim, J. H., Park, H. G., Won, J. P. and Lim, Y. M. (2006) Study of fire proof performance for newly developed fire protection material coated RC tunnel lining., Proceeding of The Korean Society of Civil Engineers, KSCE, pp. 1569-1572 (in Korean).
  2. Kim, T. K., Bae J., Choi, H. and Min I. G. (2012) Experimental Studies on PSC Airpit-Slab with Fire Resistance Panel under Static and Dynamic Loads., Journal of The Korean Society of Civil Engineers, KSCE, Vol. 32, No. 4A, pp. 245-253 (in Korean). https://doi.org/10.12652/Ksce.2012.32.4A.245
  3. Park, K. W. (2005) A Study on the Model and Influence Factor of Tunnel Fires., Graduated School of Urban Sciences, University of Seoul, Thesis of a Master, pp. 1-7 (in Korean).
  4. Park, H. G., Lee, S. B., Lee, M. S. and Kim, J. K. (2003) Research of Fire-Resistance Characteristics for Shield Tunnel., Proceeding of The Korean Society of Civil Engineers, KSCE, pp. 4801-4804 (in Korean).
  5. Park, H. G., Won, J. P. and Jang S. H. (2006) State-of-the-art Reports for Fire Protection of Tunnel Concrete, Journal of The Korea Institute for Structural Maintenamce Inspection, KSMI, Vol. 10, No. 6, pp. 22-32 (in Korean).
  6. Won, J. P., Choi, S. W., Park, C. G. and Park, H. G. (2006) Temperature Distribution of Wet-Mixed High Strength Sprayed Polymer Mortar for Fire Resistance of Tunnel., Journal of The Korean Society of Civil Engineers, KSCE, Vol. 26, No. 4C, pp. 283-290 (in Korean).
  7. Won, J. P., Park, K. H., Park C. G. and Lee, S. W. (2007) Enhenced Fire Resistance and Mechanical Properties of Hybrid Fiber Reinforced Concrete for Underground Space Concrete Structures., Journal of The Korean Society of Civil Engineers, KSCE, Vol. 27, No. 4A, pp. 627-633 (in Korean).
  8. Lee, C. Y., Sim, J. W. and Ahn, T. S. (2006) Evaluation of Fire- Resistant Performance for Tunnel Lining Concrete with Heating Temperature-Time Curves., Proceeding of The Korean Society of Civil Engineers, KSCE, pp. 1629-1632 (in Korean).
  9. Lim, K. K. and Yoo, S. B. (2007) Are We Safe from Road Tunnel Fire?, The Magazine of The Korean Society of Civil Engineers, KSCE, Vol. 55, No. 11, pp. 131-139 (in Korean).
  10. Chang, S. H., Choi, S. W., Kwon, J. W, KIm, S. H. and Bae, G. J. (2007) Alteration of mechanical properties of tunnel structural members after a tunnel fire accident., Tunnelling Technoloqy, KTA, Vol. 9, No. 2, pp. 157-169 (in Korean).
  11. Abrams, M. S. (1971) Compressive Strength of Concrete at Temperatures to 1600F, Temperature and Concrete, SP-25, American Concrete Institute, Detroit, pp. 33-58.
  12. Ali, F. (2002) Is High Strength Concrete More Susceptible to Explosive spalling than Normal Strength Concrete in Fire, Fire and Materials, Vol. 26, pp. 127-130. https://doi.org/10.1002/fam.791
  13. ACI Committee 216 (1989) Guide for Determining the Fire Endurance of Concrete Elements, ACI 216-89, American Concrete Institute, Detroit.
  14. Gabriel, A. K. (2003) Passive fire protection in tunnel, Concrete for the Construction Industry, Vol. 37, No. 2, pp. 31-36.
  15. Haak, A. (1998) Fire Protection in Traffic Tunnels, General Aspects and Results of the EUREKA Project, Tunnelling and Underground Space Technology, Vol. 13, No. 3, pp. 377-381. https://doi.org/10.1016/S0886-7798(98)00080-7
  16. Harmathy, T.Z. (1993) Fire Safety Design and Concrete, Longman Scientific & Technical.
  17. ISO. (1975) Fire Resistance Tests-Elements of Building Construction, International Standard ISO 834, Geneva.
  18. ITA Working group No.6 (2004) ITA Guideline for Structural Fire Resistance of Road Tunnels, Repair maintenance of underground structures, ITA, pp. 72-81.
  19. PIARC (1999) Fire and smoke control in road tunnels, Report of the WG 6 of the Road Tunnels Committee of the PIARC.
  20. Pierre, K., Gregoire, C., and Christophe, G. (2001) High-temperature behaviour of HPC with polypropylene fiber from spalling to microstructure, Cement & Concrete Research, Vol. 31, pp. 1487-1499. https://doi.org/10.1016/S0008-8846(01)00596-8

피인용 문헌

  1. Fire Resistance Performance of Precast Segmental Concrete Lining for Shield Tunnel vol.34, pp.1, 2014, https://doi.org/10.12652/Ksce.2014.34.1.0095