DOI QR코드

DOI QR Code

Effect of Surface Modification Process Conditions on Properties of Aramid Paper

아라미드 종이의 특성에 대한 표면 개질 과정 조건의 영향

  • Sha, Lizheng (School of Light Industry, Zhejiang University of Science & Technology) ;
  • Zhao, Huifang (School of Light Industry, Zhejiang University of Science & Technology)
  • Received : 2012.10.24
  • Accepted : 2013.01.23
  • Published : 2013.03.25

Abstract

Surface modification of meta-aramid fibers was performed by phosphoric acid treatment. Surface morphology and element composition of untreated and treated fibers were analyzed by scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS). Effects of surface modification on the mechanical strength of aramid papers made from meta-aramid fibers and fibrid were investigated. Surface modification conditions were optimized by response surface analysis (RSA). Results show that phosphoric acid treatment increases the surface roughness and oxygen content of aramid fibers. They improve the interface bonding strength between aramid fibers and fibrid, which improves the tensile strength of aramid papers. The results of response surface analysis indicate that the tensile strength of aramid papers increases by 47.5% and reaches the maximum when meta-aramid fibers are treated with 21.1wt% phosphoric acid solution at $39.3^{\circ}C$ for 36.7 min.

Keywords

Acknowledgement

Supported by : Zhejiang university of Science & technology

References

  1. C. G. George and V. Waynesboro, U.S.Patent 3,756,908 (1973).
  2. A. Bhatia, Proc. of the Electrical/Electronics Insulation Conf., Illinois, USA, 1995.
  3. H. H. Forsten and S. Khan, U.S.Patent 6,312,561 (2001).
  4. K. Nomoto, U.S.Patent 6,544,622 (2003).
  5. W. Yang, H. Yu, and M. F. Zhu, J. Macromol. Sci. Phys., 45, 573 (2006). https://doi.org/10.1080/00222340600770129
  6. H. Jung, P. Klein, and U. Kampschulte, U.S.Patent 5,432,255 (1995).
  7. A. Ohba, T. Yoshitomi, H. Iwasaki, and K. Takine, U.S.Patent 6,569,987 (2003).
  8. E. A. Merriman, Tappi J., 67, 66 (1984).
  9. B. Homan and J. R. Kinsley, U.S.Patent 2004/0140072A1 (2004).
  10. S. J. Park and M. K. Seo, Polymer(Korea), 29, 221 (2005).
  11. T. M. Liu, Y. S. Zheng, and J. Hu, J. Appl. Polym. Sci., 118, 2541 (2010). https://doi.org/10.1002/app.32478
  12. T. Peng, R. Q. Cai, C. F.Chen, F. D. Wang, X .Y. Liu, B. Wang, and J. J. Xu, J. Macromol. Sci., Part B: Physics., 51, 538 (2012). https://doi.org/10.1080/00222348.2011.609777
  13. M. Y. Zhang, J. H. Yu, and Z. Q. Lu, Trans. Chin. Pulp. Pap., 21, 72 (2006).
  14. Z. Y. Yan, H. Q. Shi, A. H. Liu, and D. M. Jia, J. Text. Res., 28, 19 (2007).
  15. M. K. Sim and S. D. Seul, Polymer(Korea), 32, 433 (2008).
  16. G. S. Sheu and S. S. Shyu, J. Adhes. Sci. Technol., 8, 531 (1994). https://doi.org/10.1163/156856194X00212
  17. J. Qiu and Z.Q. Zhang, Synth. Fiber, 30, 25 (2001).
  18. Y. H. Zhang, Y. D. Huang, J. M. He, L. N. Wu, and Z. W. Xu, Compos. Interface, 15, 611 (2008). https://doi.org/10.1163/156855408785971281
  19. L. Liu, X. Zhang, Y. D. Huang, and Z. Q. Zhang, J. Aeronautical Mater., 23, 49 (2003).
  20. L. Liu, X. Zhang, Y. D. Huang, B. Jiang, and Z. Q. Zhang, Acta Materiae Compositae Sinica, 20, 35 (2003).
  21. Y. Wang, P. Li, Y. H. Yu, G. Sui, and X. P. Yang, Acta Materiae Compositae Sinica, 24, 7 (2007).
  22. J. K. Kim, J. H. Kim, and Y. G Seoul, Polymer(Korea), 18, 775 (1994).
  23. C. Y. Yue and K. Padmanabhan, Compos. Part B: Engineering, 30, 205 (1999). https://doi.org/10.1016/S1359-8368(98)00053-5
  24. J. S. Lin, Eur. Polym. J., 38, 79 (2002). https://doi.org/10.1016/S0014-3057(01)00176-8
  25. M. Masaru, U. Yoshikimi, and I. Yoshito, Polymer, 35, 5336 (1994). https://doi.org/10.1016/0032-3861(94)90487-1
  26. W. Z. Nie, J. Li, and Z. Zhou, Polym.-Plast. Technol. Eng., 49, 305 (2010). https://doi.org/10.1080/03602550903413763
  27. J. S. Jang and H. D. Kim, Polymer(Korea), 20, 134 (1996).
  28. J. G. Kim, I. Choi, D. G. Lee, and I. S. Seo, Compos. Struct., 93, 2696 (2011). https://doi.org/10.1016/j.compstruct.2011.06.002
  29. Tappi Standard, T494 om-01. Tensile Properties of Paper and Paperboard (Using Constant Rate of Elongation Apparatus), USA, 2001.
  30. H. F. Zhao, M. Y. Zhang, S. F. Zhang, and J. B. Lu, Polym. -Plast. Technol. Eng., 51, 134 (2012). https://doi.org/10.1080/03602559.2011.618161
  31. T. K. Lin, S. J. Wu, J. G. Lai, and S. S. Shyu, Compos. Sci. Technol., 60, 1873 (2000). https://doi.org/10.1016/S0266-3538(00)00074-9
  32. B. Ramazan and C. G. Tesoro, Tex. Res. J., 60, 334 (1990). https://doi.org/10.1177/004051759006000604

Cited by

  1. Argon low-temperature plasma modification of chopped aramid fiber and its effect on paper performance of aramid sheets vol.134, pp.34, 2017, https://doi.org/10.1002/app.45215
  2. Highly improved mechanical strength of aramid paper composite via a bridge of cellulose nanofiber vol.24, pp.7, 2017, https://doi.org/10.1007/s10570-017-1315-9
  3. Fabrication of mechanically robust and UV-resistant aramid fiber-based composite paper by adding nano-TiO2 and nanofibrillated cellulose vol.25, pp.7, 2018, https://doi.org/10.1007/s10570-018-1818-z
  4. Study of the relationship between characteristics of aramid fibrids and mechanical property of aramid paper using DSC vol.14, pp.2, 2013, https://doi.org/10.1515/epoly-2013-0063
  5. Study of the relationship between characteristics of aramid fibrids and mechanical property of aramid paper using DSC vol.14, pp.2, 2013, https://doi.org/10.1515/epoly-2013-0063
  6. The Effect of Phosphoric Acid Functionalization of Para-aramid Fiber on the Mechanical Property of Para-aramid Sheet vol.13, pp.3, 2013, https://doi.org/10.1177/155892501801300303
  7. Composite Aramid Membranes with High Strength and pH-Response vol.13, pp.4, 2013, https://doi.org/10.3390/polym13040621