DOI QR코드

DOI QR Code

Study of Performance and Knock Characteristics with Compression Ratio Change in HCNG Engine

HCNG 엔진에서 압축비 변경에 따른 성능 및 노킹 특성 연구

  • Received : 2012.10.16
  • Accepted : 2013.01.10
  • Published : 2013.04.01

Abstract

Hydrogen-compressed natural gas (HCNG) blend has attracted attention as a fuel that can reduce $CO_2$ emissions because it has low carbon content and burns efficiently. An increase in the compression ratio of HCNG engines was considered as one of the methods to improve their efficiency and reduce $CO_2$ emissions. However, a high combustion rate and flame temperature cause abnormal combustion such as pre-ignition or knocks, which in turn can cause damage to the engine components and decrease the engine power. In this study, the performance and knock characteristics with a change in the compression ratio of an HCNG engine were analyzed. The combustion characteristics of HCNG fuel were evaluated as a function of the excess air ratio using a conventional CNG engine. The effects of the compression ratio on the engine performance were evaluated through the same experimental procedures.

온실가스인 $CO_2$ 배출을 줄이기 위한 연료로서 고효율 연소의 특성을 갖는 수소-천연가스 혼합연료(HCNG)가 유력한 미래 대체연료로서 주목받고 있다. 일반적으로 엔진에서의 압축비 상승은 효율 향상 및 이산화탄소 배출 저감을 위한 방법 중의 하나로서 HCNG 엔진에서도 고압축비의 적용이 효과적일 수 있으나, 수소의 높은 연소 속도 및 화염 온도로 인한 조기착화, 노킹 등의 이상연소는 엔진 부품의 파손 및 출력 저하를 초래할 수 있다. 본 연구는 HCNG 엔진에서 압축비를 변경하여 엔진 성능 및 노킹 특성을 분석하는데 목적이 있다. 기존의 CNG 엔진에 CNG 및 HCNG 연료를 적용하여 공기과잉률의 변화에 따른 연소 특성을 분석하고, 압축비 변경 후 엔진의 성능에 미치는 영향을 파악하였다.

Keywords

References

  1. Bae, C. S. and Jung, Y. J., 2012, "Fuel Economy Improvement of Automotive Engines," J. of KSAE, Vol. 34, No. 1, pp. 39-45.
  2. Chiodi, M., Ferrari, A., Mack, O., Bargende, M. and Wichelhaus, D., 2011, "A Way towards Remarkable Reduction of $CO_2$-Emissions in Motorsports: The CNG-Engine," SAE Technical Paper, 2011-37-0006.
  3. Subramanian, V., Mallikarjuna, J. and Ramesh, A., 2005, "Performance, Emission and Combustion Characteristics of a Hydrogen Fueled SI Engine - An Experimental Study," SAE Technical Paper, 2005-26-349.
  4. Akansu, S. O., Dulger, Z., Kahraman, N. and Veziroglu, T. N., 2004, "Internal Combustion Engines Fueled by Natural Gas - Hydrogen Mixtures," Int. J. of Hydrogen Energy, Vol. 29, No. 14, pp. 1527-1539. https://doi.org/10.1016/j.ijhydene.2004.01.018
  5. Ma., F. and Yu, W., 2008, "Study on the Extension of Lean Operation Limit Through Hydrogen Enrichment in a Natural Gas Spark-Ignition Engine," Int. J. of Hydrogen Energy, Vol. 33, No. 4, pp. 1416-1424. https://doi.org/10.1016/j.ijhydene.2007.12.040
  6. Wang, X., Zhang, H., Yao, B., Lei, Y., Sun, X., Wang, D. and Ge, Y., 2012, "Expermental Study on Factors Affecting Lean Combustion Limit of S.I Engine Fueled with Compressed Natural Gas and Hydrogen Blends," Energy, Vol. 38, No. 1, pp. 58-65. https://doi.org/10.1016/j.energy.2011.12.042
  7. Collier, K., Muligan, N., Shin, D. and and Brandon, S., 2005, "Emission Results from the New Development of a Dedicated Hydrogen-enriched Natural Gas Heavy Duty Engine," SAE Technical Paper, 2005-01-0235.
  8. Munshi, S., Nedelcu, C., Harris, J., Edwards, T. et al, 2004, "Hydrogen Blended Natural Gas Operation of a Heavy Duty Turbocharged Lean Burn Spark Ignition Engine," SAE Technical Paper, 2004-01-2956.
  9. Nates, R. J. and Yates, A. D. B., 1994, "Knock Damage Mechanisms in Spark-Ignition Engines," SAE Technical Paper, 942064.
  10. Fitton, J. and Nates, R., 1996, "Knock Erosion in Spark-Ignition Engines," SAE Technical Paper, 962102.