DOI QR코드

DOI QR Code

Effect of Aspect Ratio of Flat Tube on R410A Evaporation Heat Transfer and Pressure Drop

납작관의 종횡비가 R-410A 증발열전달 및 압력손실에 미치는 영향

  • Kim, Nae Hyun (Dept. of Mechanical System Engineering, Univ. of Incheon) ;
  • Lee, Eul Jong (Dept. of Mechanical System Engineering, Univ. of Incheon) ;
  • Byun, Ho Won (Dept. of Mechanical System Engineering, Univ. of Incheon)
  • 김내현 (인천대학교 기계시스템공학부) ;
  • 이을종 (인천대학교 기계시스템공학부) ;
  • 변호원 (인천대학교 기계시스템공학부)
  • Received : 2012.10.23
  • Accepted : 2012.12.03
  • Published : 2013.04.01

Abstract

In this study, R-410A evaporation heat transfer tests were conducted in flattened tubes made from 5-mm round tubes. The test range covered a saturation temperature of $15^{\circ}C$, heat flux of $5{\sim}15kW/m^2K$, and mass flux of $200-400kg/m^2s$. The results showed that both the condensation heat transfer coefficient and the pressure drop increased as the aspect ratio increased, with a pronounced increase for an aspect ratio of 4. A comparison of the flattened tube data with existing correlations revealed that the heat transfer coefficients were reasonably predicted by the Shah correlation, and the pressure drops were reasonably predicted by the Jung and Radermacher correlation.

본 연구에서는 내경 5.0mm 원관을 납작하게 한 납작관에 대하여 R-410A를 사용하여 증발열전달 실험을 수행하였다. 실험은 포화온도를 $15^{\circ}C$로 고정한 상태에서 열유속을 $5{\sim}15kW/m^2$, 질량유속을 $200{\sim}400kg/m^2s$로 변화시키며 수행되었다. 실험결과 납작관의 종횡비가 증가할수록 열전달계수와 압력손실 모두 증가하였는데 특히 종횡비 4 인 경우 증가폭이 현저하였다. 납작관의 실험결과를 기존 상관식들과 비교한 결과 열전달계수는 Shah 상관식, 마찰계수는 Jung and Radermacher 상관식이 적절히 예측하였다.

Keywords

References

  1. Webb, R. L. and Iyengar, A., 2001, "Oval Finned Tube Condenser and Design Pressure Limits," J. Enhanced Heat Transfer, Vol. 8, pp. 147-158. https://doi.org/10.1615/JEnhHeatTransf.v8.i3.20
  2. Kim, N.-H. and Kim, S.-H., 2010, "Dry and Wet Air- Side Performance of a Louver-Finned Heat Exchanger Having Flat Tubes," Journal of Mechanical Science and Technology, Vol. 24, pp. 1553-1561. https://doi.org/10.1007/s12206-010-0409-1
  3. Collier, J. G. and Thome, J. R., 1994, Convective Boiling and Condensation, 3rd edition, Oxford University Press.
  4. Ghiaansiaan, M. S., 2008, Two-Phase Boiling and Condensation in Conventional and Miniature Systems, Cambridge University Press.
  5. Wilson, M. J., Newell, T. A., Chato, J. C. and Infante Ferreira, C. A., 2003, "Refrigerant Charge, Pressure Drop, and Condensation Heat Transfer in Flattened Tubes," Int. J. Refrigeration, Vol. 26, pp. 442-451. https://doi.org/10.1016/S0140-7007(02)00157-3
  6. Kim, M.-H., Shin, J. S. and Bullard, C. W., 2001, "Heat Transfer and Pressure Drop Characteristics during R-22 Evaporation in an Oval Microfin Tube," J. Heat Transfer, Vol. 123, pp. 301-308. https://doi.org/10.1115/1.1351894
  7. Moreno Quiben, J., Cheng, L., da Silva Lima, R. J. and Thome, J. R., 2009, "Flow Boiling in Horizontal Flatten Tubes: Part I - Two-Phase Frictional Pressure Drop Results and Model," Int . J. Heat Mass Transfer, Vol. 52, pp. 3634-3644. https://doi.org/10.1016/j.ijheatmasstransfer.2008.12.032
  8. Moreno Quiben, J., Cheng, L., da Silva Lima, R. J. and Thome, J. R., 2009, "Flow Boiling in Horizontal Flatten Tubes: Part II - Flow Boiling Heat Transfer Results and Model," Int . J. Heat Mass Transfer, Vol. 52, pp. 3645-3653. https://doi.org/10.1016/j.ijheatmasstransfer.2008.12.033
  9. Nasr, M., Akhavan-Behabadi, M. A. and Marashi, S. E., 2010, "Performance Evaluation of Flattened Tube in Boiling Heat Transfer Enhancement and Its Effect on Pressure Drop," Int. Comm. Heat Mass Transfer, Vol. 37, pp. 430-436. https://doi.org/10.1016/j.icheatmasstransfer.2009.11.011
  10. Kim, N.-H., Park, J.-H. and Cha, S.-J., 2010, "Condensation Heat Transfer and Pressure Drop in Flat Tubes with Different Aspect Ratios," Trans. Korean Soc. Mech. Eng. B, Vol. 34, pp. 1111-1119. https://doi.org/10.3795/KSME-B.2010.34.12.1111
  11. ANSYS 12, 2010, ANSYS Inc.,
  12. Kim, N.-H., Cho, J.-P. and Youn, B., 2003, "Condensation of R-22 and R-410A in Flat Aluminum Extruded Tubes," Int. J. Refrigeration, Vol. 26, pp. 830-839. https://doi.org/10.1016/S0140-7007(03)00049-5
  13. Wilson, E. E., 1915, "A Basis for Rational Design of Heat Transfer Apparatus," Trans. ASME, Vol. 37, pp. 47-70.
  14. Kline S. J., McClintock, F. A., 1953, "The Description of Uncertainties in Single Sample Experiments," Mechanical Engineering, Vol. 75, pp. 3-9.
  15. Yang, C. Y. and Webb, R. L., 1996, "Friction Pressure Drop of R-12 in Small Hydraulic Diameter Extruded Aluminum Tubes with and Without Micro- Fins," Int. J. Heat Mass Transfer, Vol. 39, pp.801-809. https://doi.org/10.1016/0017-9310(95)00151-4
  16. Yang, C. Y. and Webb, R. L., 1996, "Condensation of R-12 in Small Hydraulic Diameter Extruded Aluminum Tubes with and Without Micro-Fins," Int. J. Heat Mass Transfer, Vol. 39, pp.791-800. https://doi.org/10.1016/0017-9310(95)00150-6
  17. Webb, R. L. and Kim, N. H., 2005, Principles and Enhanced Heat Transfer, Ch. 12, 2nd edition, Taylor and Francis Pub.
  18. Shah, M. M., 1982, "Chart Correlation for Saturated Boiling Heat Transfer: Equations and Further Study," ASHRAE Trans., Vol. 88, Pt. 1, pp. 185-196.
  19. Kandlikar, S. G., 1990, "A General Correlation for Two-Phase Boiling Heat Transfer Coefficient Inside Horizontal and Vertical Tubes," J. Heat Transfer, Vol. 112, pp. 219-228 https://doi.org/10.1115/1.2910348
  20. Gungor, K. E. and Winterton, R. H .S., 1987, "Simplified General Correlations for Saturated Flow Boiling and Comparisons of Correlations with Data," Canadian J. Chemical Eng., Vol. 65, Nol. 1, pp. 148-156. https://doi.org/10.1002/cjce.5450650124
  21. Cornwell, K. and Kew, P. A.,1993, "Boiling in Small Parallel Channels," Proceedings of CEC Conf. on Energy Efficiency in Process Technology, Elsevier Applied Sciences, pp. 624-638.
  22. Taitel, Y. and Dukler, A. E., 1976, "A Model for Predicting Flow Regime Transitions in Horizontal and Near Horizontal Gas-Liquid Flow," AIChE J., Vol. 22, pp. 47-55. https://doi.org/10.1002/aic.690220105
  23. Zivi, S. M., 1964, "Estimation of Steady-State Steam Void Fraction by Means of the Principle of Minimum Entropy Production," J. Heat Transfer, Vol. 86, pp. 247-252. https://doi.org/10.1115/1.3687113
  24. Jung, D. S. and Radermacher, R., 1989, "Prediction of Pressure Drop During Horizontal Annular Flow Boiling of Pure and Mixed Refrigerants," Int. J. Heat Mass Transfer, Vol. 32, No. 12, pp. 2435-2446 https://doi.org/10.1016/0017-9310(89)90203-2
  25. Muller-Steinhagen, H. and Heck, K., 1986, "A Simple Friction Pressure Drop Correlation for Two- Phase Flow in Pipes," Chem. Eng. Processing, Vol. 20, pp. 297-308 https://doi.org/10.1016/0255-2701(86)80008-3
  26. Friedel, L., 1979, "Improved Pressure Drop Correlations for Horizontal and Vertical Two-Phase Pipe Flow," 3R Int., Vol. 18, pp. 485-492.