DOI QR코드

DOI QR Code

Effect of Bifurcation Angle on Blood Flow in Flexible Carotid Artery

유연한 경동맥 분지관에서 분지각이 혈액의 유동에 미치는 영향에 관한 연구

  • Lee, Sang Hoon (School of Mechanical and Aerospace Engineering, Seoul Nat'l Univ.) ;
  • Choi, Hyoung Gwon (Dept. of Mechanical Engineering, Seoul Nat'l Univ. of Science and Technology) ;
  • Yoo, Jung Yul (School of Mechanical and Aerospace Engineering, Seoul Nat'l Univ.)
  • 이상훈 (서울대학교 기계항공공학부) ;
  • 최형권 (서울과학기술대학교 기계공학과) ;
  • 유정열 (서울대학교 기계항공공학부)
  • Received : 2012.01.06
  • Accepted : 2013.01.05
  • Published : 2013.03.01

Abstract

To investigate the effect of the flexible artery wall on the blood flow, three-dimensional numerical simulations were carried out for analyzing the time-dependent incompressible flows of Newtonian fluids constrained by a flexible wall. The Navier-Stokes equations for fluid flow were solved using the P2P1 Galerkin finite element method, and mesh movement was achieved using an arbitrary Lagrangian-Eulerian formulation. The Newmark method was employed for solving the dynamic equilibrium equations for the deformation of a linear elastic solid. To avoid complexity due to the necessity of additional mechanical constraints, we used a combined formulation that includes both the fluid and structure equations of motion to produce a single coupled variational equation. The results showed that the flexibility of the carotid wall significantly affects flow phenomena during the pulse cycle. The flow field was also found to be strongly influenced by the bifurcation angle.

유연한 혈관벽을 가진 경동맥 분지관을 흐르는 혈액의 유동을 해석하기 위하여 비정상상태, 비압축성, 뉴턴 유체를 가정한 3차원 유한요소해석을 수행하였다. 유체영역은 P2P1 유한요소를 사용하였으며, 격자의 움직임을 모사하기 위하여 arbitrary Lagrangian-Eulerian 기법을 적용하였다. Newmark 관계식을 이용하여 고체영역의 선형탄성 방정식의 변수들을 속도에 관한 방정식으로 간략화하였으며, 유체와 고체의 운동에 관하여 완전 결합된 공식을 얻었다. 맥동의 한 주기 동안에 혈관벽의 유연성이 유동장에 큰 영향을 미치며, 경동맥 분지각이 커짐에 따라 경동맥 공동에서 유동장의 정체영역이 더 넓게 분포한다는 연구결과를 얻었다.

Keywords

References

  1. Caro, C. G., Fitz-Gerald, J. M. and Schroter, R. C., 1971, "Atheroma and Arterial Wall Shear Dependent Mass Transfer Mechanism for Atherogenesis," Proc. Roy. Soc. Lond. Biol. B, Vol. 177, pp. 109-159. https://doi.org/10.1098/rspb.1971.0019
  2. Bharadvaj, B. K., Mabon, R. F. and Giddens, D. P., 1982, "Steady Flow in a Model of the Human Carotid Bifurcation. Part I: Flow Visualization," J. Biomech., Vol. 32, pp. 349-362.
  3. Bharadvaj, B. K., Mabon, R. F. and Giddens, D. P., 1982, "Steady Flow in a Model of the Human Carotid Bifurcation. Part II: Laser-Doppler Measurements," J. Biomech., Vol. 32, pp. 362-378.
  4. Ku, D. N., Giddens, D. P., Zarins, C. K. and Glagov, S., 1985, "Pulsatile Flow and Atherosclerosis in the Human Carotid Bifurcation," Arteriosclerosis, Vol. 5, pp. 293-302. https://doi.org/10.1161/01.ATV.5.3.293
  5. Perktold, K. and Resch, M., 1990, "Numerical Flow Studies in Human Carotid Artery Bifurcation: Basic Discussion of the Geometric Factor in Atherogenesis," J. Biomed. Eng., Vol. 12, pp. 111-123. https://doi.org/10.1016/0141-5425(90)90131-6
  6. Perktold, K., Peter, R. O., Resch, M. and Langs, G., 1991, "Pulsatile Non-Newtonian Flow in Three- Dimensional Carotid Bifurcation Models: A Numerical Study of Flow Phenomena Under Different Bifurcation Angles," J. Biomed. Eng., Vol. 13, pp. 507-515. https://doi.org/10.1016/0141-5425(91)90100-L
  7. Perktold, K. and Rappitsch, G., 1995, "Computer Simulation of Local Blood Flow and Vessel Mechanics in a Compliant Carotid Artery Bifurcation Model," J. Biomech., Vol. 28, pp. 845-856. https://doi.org/10.1016/0021-9290(95)95273-8
  8. Urquiza, S. A., Blanco, P. J., Venere, M. J. and Feijoo, R. A., 2006, "Multidimensional Modelling for the Carotid Artery Blood Flow," Comput. Methods Appl. Mech. Engrg., Vol. 195, pp. 4002-4017. https://doi.org/10.1016/j.cma.2005.07.014
  9. Kim, C. S., Kiris, C., Kwak, D. and David, T., 2006, "Numerical Simulation of Local Blood Flow in the Carotid and Cerebral Arteries Under Altered Gravity," J. Biomech. Eng., Vol. 128, pp. 194-202. https://doi.org/10.1115/1.2165691
  10. Kuhl, E., Hulshoff, S. and de Borst, R., 2003, "An Arbitrary Lagrangian Eulerian Finite Element Approach for Fluid-Structure Interaction Phenomena," Int. J. Numer. Methods Engrg., Vol. 57, pp. 117-142. https://doi.org/10.1002/nme.749
  11. Kim, H. G., 2010, "A New Coupling Strategy for Fluid-Solid Interaction Problems by Using the Interface Element Method," Int. J. Numer. Methods Engrg., Vol. 81, pp. 403-428.
  12. Lee, S.H., Choi, H.G. and Yoo, J.Y., 2012, "Finite Element Simulation of Blood Flow in a Flexible Carotid Artery Bifurcation," J. Mech. Sci. Tech., Vol. 26, pp. 1355-1361. https://doi.org/10.1007/s12206-012-0331-9
  13. Codina, R., Onate, E. and Cervera, M., 1992, "The Intrinsic Time for the Streamline Upwind/Petrov- Galerkin Formulation Using Quadratic Elements," Comput. Methods Appl. Mech. Engrg., Vol. 94, pp. 239-262. https://doi.org/10.1016/0045-7825(92)90149-E
  14. Chung, J. and Hulbert, G. M., 1993, "A Time Integration Algorithm for Structural Dynamics with Improved Numerical Dissipation: the Generalized-$\alpha$ Method," J. Appl. Mech., Vol. 60, pp. 371-375. https://doi.org/10.1115/1.2900803
  15. Jansen, K. E., Whiting, C. H. and Hulbert, G. M., 2000, "A Generalized-$\alpha$ Method for Integrating the Filtered Navier-Stokes Equations with a Stabilized Finite Element Method," Comput. Methods Appl. Mech. Engrg., Vol. 190, pp. 305-319. https://doi.org/10.1016/S0045-7825(00)00203-6
  16. Greenshields, C. J. and Weller, H. G., 2005, "A Unified Formulation for Continuum Mechanics Applied to Fluid-Structure Interaction in Flexible Tubes," Int. J. Numer. Methods Engrg., Vol. 64, pp. 1575-1593. https://doi.org/10.1002/nme.1409
  17. Bazilevs, Y., Calo, V. M., Zhang, Y. and Hughes, T. J. R., 2006, "Isogeometric Fluid-Structure Interaction Analysis with Applications to Arterial Blood Flow," Comput. Mech., Vol. 38, pp. 310-322. https://doi.org/10.1007/s00466-006-0084-3
  18. Gijsen, F. J. H., van de Vosse, F. N. and Janssen, J. D., 1999, "The Influence of the Non-Newtonian Properties of Blood on the Flow in Large Arteries: Steady Flow in a Carotid Bifurcation Model," J. Biomech., Vol. 32, pp. 601-608. https://doi.org/10.1016/S0021-9290(99)00015-9
  19. Vignon-Clementel, I. E., Figueroa, C. A., Jansen, K. E. and Taylor, C. A., 2006, "Outflow Boundary Conditions for Three-Dimensional Finite Element Modeling of Blood Flow and Pressure in Arteries," Comput. Mehotds Appl. Mech. Eng., Vol. 195, pp. 3776-3796. https://doi.org/10.1016/j.cma.2005.04.014
  20. Selzer, R. H., Mack, W. J., Lee, P. L., Kwong-Fu, H. and Hodis, H. N., 2001, "Improved Common Carotid Elasticity and Intima-Media Thickness Measurements from Computer Analysis of Sequential Ultrasound Frames," Atherosclerosis, Vol. 154, pp. 185-193. https://doi.org/10.1016/S0021-9150(00)00461-5
  21. Tada, S. and Tarbell, J. M., 2005, "A Computational Study of Flow in a Compliant Carotid Bifurcation- Stress Phase Angle Correlation with Shear Stress," Ann. Biomed. Eng,.Vol. 33, pp. 1219-1229.
  22. Nichols, W. W. and O'Rourke, M. F., 2005, "McDonald's Blood Flow in Arteries: Theoretical, Experimental and Clinical Principles," Hodder Arnold Publishers.