References
- Caro, C. G., Fitz-Gerald, J. M. and Schroter, R. C., 1971, "Atheroma and Arterial Wall Shear Dependent Mass Transfer Mechanism for Atherogenesis," Proc. Roy. Soc. Lond. Biol. B, Vol. 177, pp. 109-159. https://doi.org/10.1098/rspb.1971.0019
- Bharadvaj, B. K., Mabon, R. F. and Giddens, D. P., 1982, "Steady Flow in a Model of the Human Carotid Bifurcation. Part I: Flow Visualization," J. Biomech., Vol. 32, pp. 349-362.
- Bharadvaj, B. K., Mabon, R. F. and Giddens, D. P., 1982, "Steady Flow in a Model of the Human Carotid Bifurcation. Part II: Laser-Doppler Measurements," J. Biomech., Vol. 32, pp. 362-378.
- Ku, D. N., Giddens, D. P., Zarins, C. K. and Glagov, S., 1985, "Pulsatile Flow and Atherosclerosis in the Human Carotid Bifurcation," Arteriosclerosis, Vol. 5, pp. 293-302. https://doi.org/10.1161/01.ATV.5.3.293
- Perktold, K. and Resch, M., 1990, "Numerical Flow Studies in Human Carotid Artery Bifurcation: Basic Discussion of the Geometric Factor in Atherogenesis," J. Biomed. Eng., Vol. 12, pp. 111-123. https://doi.org/10.1016/0141-5425(90)90131-6
- Perktold, K., Peter, R. O., Resch, M. and Langs, G., 1991, "Pulsatile Non-Newtonian Flow in Three- Dimensional Carotid Bifurcation Models: A Numerical Study of Flow Phenomena Under Different Bifurcation Angles," J. Biomed. Eng., Vol. 13, pp. 507-515. https://doi.org/10.1016/0141-5425(91)90100-L
- Perktold, K. and Rappitsch, G., 1995, "Computer Simulation of Local Blood Flow and Vessel Mechanics in a Compliant Carotid Artery Bifurcation Model," J. Biomech., Vol. 28, pp. 845-856. https://doi.org/10.1016/0021-9290(95)95273-8
- Urquiza, S. A., Blanco, P. J., Venere, M. J. and Feijoo, R. A., 2006, "Multidimensional Modelling for the Carotid Artery Blood Flow," Comput. Methods Appl. Mech. Engrg., Vol. 195, pp. 4002-4017. https://doi.org/10.1016/j.cma.2005.07.014
- Kim, C. S., Kiris, C., Kwak, D. and David, T., 2006, "Numerical Simulation of Local Blood Flow in the Carotid and Cerebral Arteries Under Altered Gravity," J. Biomech. Eng., Vol. 128, pp. 194-202. https://doi.org/10.1115/1.2165691
- Kuhl, E., Hulshoff, S. and de Borst, R., 2003, "An Arbitrary Lagrangian Eulerian Finite Element Approach for Fluid-Structure Interaction Phenomena," Int. J. Numer. Methods Engrg., Vol. 57, pp. 117-142. https://doi.org/10.1002/nme.749
- Kim, H. G., 2010, "A New Coupling Strategy for Fluid-Solid Interaction Problems by Using the Interface Element Method," Int. J. Numer. Methods Engrg., Vol. 81, pp. 403-428.
- Lee, S.H., Choi, H.G. and Yoo, J.Y., 2012, "Finite Element Simulation of Blood Flow in a Flexible Carotid Artery Bifurcation," J. Mech. Sci. Tech., Vol. 26, pp. 1355-1361. https://doi.org/10.1007/s12206-012-0331-9
- Codina, R., Onate, E. and Cervera, M., 1992, "The Intrinsic Time for the Streamline Upwind/Petrov- Galerkin Formulation Using Quadratic Elements," Comput. Methods Appl. Mech. Engrg., Vol. 94, pp. 239-262. https://doi.org/10.1016/0045-7825(92)90149-E
-
Chung, J. and Hulbert, G. M., 1993, "A Time Integration Algorithm for Structural Dynamics with Improved Numerical Dissipation: the Generalized-
$\alpha$ Method," J. Appl. Mech., Vol. 60, pp. 371-375. https://doi.org/10.1115/1.2900803 -
Jansen, K. E., Whiting, C. H. and Hulbert, G. M., 2000, "A Generalized-
$\alpha$ Method for Integrating the Filtered Navier-Stokes Equations with a Stabilized Finite Element Method," Comput. Methods Appl. Mech. Engrg., Vol. 190, pp. 305-319. https://doi.org/10.1016/S0045-7825(00)00203-6 - Greenshields, C. J. and Weller, H. G., 2005, "A Unified Formulation for Continuum Mechanics Applied to Fluid-Structure Interaction in Flexible Tubes," Int. J. Numer. Methods Engrg., Vol. 64, pp. 1575-1593. https://doi.org/10.1002/nme.1409
- Bazilevs, Y., Calo, V. M., Zhang, Y. and Hughes, T. J. R., 2006, "Isogeometric Fluid-Structure Interaction Analysis with Applications to Arterial Blood Flow," Comput. Mech., Vol. 38, pp. 310-322. https://doi.org/10.1007/s00466-006-0084-3
- Gijsen, F. J. H., van de Vosse, F. N. and Janssen, J. D., 1999, "The Influence of the Non-Newtonian Properties of Blood on the Flow in Large Arteries: Steady Flow in a Carotid Bifurcation Model," J. Biomech., Vol. 32, pp. 601-608. https://doi.org/10.1016/S0021-9290(99)00015-9
- Vignon-Clementel, I. E., Figueroa, C. A., Jansen, K. E. and Taylor, C. A., 2006, "Outflow Boundary Conditions for Three-Dimensional Finite Element Modeling of Blood Flow and Pressure in Arteries," Comput. Mehotds Appl. Mech. Eng., Vol. 195, pp. 3776-3796. https://doi.org/10.1016/j.cma.2005.04.014
- Selzer, R. H., Mack, W. J., Lee, P. L., Kwong-Fu, H. and Hodis, H. N., 2001, "Improved Common Carotid Elasticity and Intima-Media Thickness Measurements from Computer Analysis of Sequential Ultrasound Frames," Atherosclerosis, Vol. 154, pp. 185-193. https://doi.org/10.1016/S0021-9150(00)00461-5
- Tada, S. and Tarbell, J. M., 2005, "A Computational Study of Flow in a Compliant Carotid Bifurcation- Stress Phase Angle Correlation with Shear Stress," Ann. Biomed. Eng,.Vol. 33, pp. 1219-1229.
- Nichols, W. W. and O'Rourke, M. F., 2005, "McDonald's Blood Flow in Arteries: Theoretical, Experimental and Clinical Principles," Hodder Arnold Publishers.