DOI QR코드

DOI QR Code

Nanoemulsions containing Vitamin E acetate prepared by PIC(phase inversion composition) methods: Factors affecting droplet sizes

  • Kim, Eun-Hee (Basic Medicine Department, College of Medical Science, Jeonju University) ;
  • Cho, Wan-Goo (Basic Medicine Department, College of Medical Science, Jeonju University)
  • 투고 : 2013.12.04
  • 심사 : 2013.12.19
  • 발행 : 2013.12.30

초록

We have investigated the influence of system composition and preparation conditions on the particle size of vitamin E acetate (VE)-loaded nanoemulsions prepared by PIC(phase inversion composition) emulsification. This method relies on the formation of very fine oil droplets when water is added to oil/surfactant mixture. The oil-to-emulsion ratio content was kept constant (5 wt.%) while the surfactant-to-oil ratio (%SOR) was varied from 50 to 200 %. Oil phase composition (vitamin E to medium chain ester ratio, %VOR) had an effect on particle size, with the smallest droplets being formed below 60 % of VOR. Food-grade non-ionic surfactants (Tween 80 and Span 80) were used as an emulsifier. The effect of f on the droplet size distribution has been studied. In our system, the droplet volume fraction, given by the oil volume fraction plus the surfactant volume fraction, was varied from 0.1 to 0.3. The droplet diameter remains less than 350 nm when O/S is fixed at 1:1. The droplet size increases gradually as the increasing the volume fraction. Particle size could also be reduced by increasing the temperature when water was added to oil/surfactant mixture. By optimizing system composition and homogenization conditions we were able to form VE-loaded nanoemulsions with small mean droplet diameters (d < 50 nm). The PIC emulsification method therefore has great potential for forming nanoemulsion-based delivery systems for food, personal care, and pharmaceutical applications.

키워드

참고문헌

  1. F. Ostertag, J. Weiss, and D. J. McClements, J. Colloid Interface Sci., 388, 95 (2012). https://doi.org/10.1016/j.jcis.2012.07.089
  2. Z. Cordero, D. Drogan, C. Weikert, and H. Boeing, Crit. Rev. Food Sci. Nutr., 50, 420 (2010). https://doi.org/10.1080/10408390802304230
  3. J. Feng, Z. Wang, J. Zhang, Z. Wang, and F. Liu, Colloids Surf. A, 339, 1 (2009).
  4. D. J. McClements, E. A. Decker, and J. Weiss, J. Food Sci., 72, R109 (2007). https://doi.org/10.1111/j.1750-3841.2007.00507.x
  5. C. Solans and I. Sole, Curr. Opin. Colloid Interface Sci., 17, 246 (2012). https://doi.org/10.1016/j.cocis.2012.07.003
  6. T. Tadros, P. Izquierdo, J. Esquena, and C. Solans, Adv. Colloid Interface Sci., 108-109, 303 (2004). https://doi.org/10.1016/j.cis.2003.10.023
  7. D. J. McClements, Ther. Delivery, 3, 801 (2012). https://doi.org/10.4155/tde.12.56
  8. D. J. McClements and J. Rao, Crit. Rev. Food Sci. Nutr., 51, 285 (2011). https://doi.org/10.1080/10408398.2011.559558
  9. A. A. Date, N. Desai, R. Dixit, and M. Nagarsenker, Nanomedicine, 5, 1595 (2010). https://doi.org/10.2217/nnm.10.126
  10. N. Anton and T.F. Vandamme, Int. J. Pharm., 377, 142 (2009). https://doi.org/10.1016/j.ijpharm.2009.05.014
  11. W. Somchue, W. Sermsri, J. Shiowatana, and A. Siripinyanond, Food Res. Int., 42, 909 (2009). https://doi.org/10.1016/j.foodres.2009.04.021
  12. A. Forgiarini, J. Esquena, C. Gonza, and C. Solans, Langmuir, 17, 2076 (2001). https://doi.org/10.1021/la001362n
  13. E. H. Kim and W. G. Cho, JDCTA, 7(11), 365 (2013).
  14. P. Izquierdo, J. Feng, J. Esquena, T. F. Tadros, J. C. Dederen, M. J. Garcia, N. Azemar, and C. Solans, J. Colloid Interface Sci., 285, 388 (2005). https://doi.org/10.1016/j.jcis.2004.10.047
  15. C. M. Pey, A. Maestro, I. Sole, C. Gonzalez, C. Solans, and J. M. Gutierrez, Colloids Surf. A, 288, 144 (2006). https://doi.org/10.1016/j.colsurfa.2006.02.026
  16. M. Hessien, N. Singh, C. Kim, and E. Prouzet, Langmuir, 27 (2011) 2299. https://doi.org/10.1021/la104728r
  17. L. Wang, J. Dong, J. Chen, J. Eastoe, and X. Li, J. Colloid Interface Sci., 330, 443 (2009). https://doi.org/10.1016/j.jcis.2008.10.077
  18. J. H. Yoo, S. Shanmugam, P. Thapa, E. S. Lee, P. Balakrishnan, R. Baskaran, S. K. Yoon, H. G. Choi, C. S. Yong, B. K. Yoo, and K. Han, Arch. Pharmacal Res., 33, 417 (2010). https://doi.org/10.1007/s12272-010-0311-5
  19. D. Morales, J. M. Gutierrez, M. J. Garcia-Celma, and Y. C. Solans, Langmuir, 19, 7196 (2003). https://doi.org/10.1021/la0300737
  20. L. Yu, C. Li, J. Xu, J. C. Hao, and D. J. Sun, Langmuir, 28, 14547 (2012). https://doi.org/10.1021/la302995a
  21. S. Sahin and S. G. Sumnu, Physical Properties of Foods, Springer, New York, 2006.
  22. J. Israelachvili, Intermolecular and Surface Forces, third ed., Academic Press, London, UK, 2011.
  23. N. Anton and T. F. Vandamme, Int. J. Pharm., 377, 142 (2009). https://doi.org/10.1016/j.ijpharm.2009.05.014
  24. D. J. McClements, Soft Matter, 7, 2297 (2011). https://doi.org/10.1039/c0sm00549e
  25. T. G. Mason, J. N. Wilking, K. Meleson, C. B. Chang, and S. M. Graves, J. Phys. Condens. Matter, 18, R635 (2006). https://doi.org/10.1088/0953-8984/18/41/R01
  26. D. J. McClements and J. Rao, Crit. Rev. Food Sci. Nutr., 51, 285 (2011). https://doi.org/10.1080/10408398.2011.559558
  27. A. S. Kabalnov and E. D. Shchukin, Adv. Colloid Interface Sci., 38, 69 (1992). https://doi.org/10.1016/0001-8686(92)80043-W
  28. D. J. McClements, Food Emulsions: Principles, Practice, and Techniques, second ed., CRC Press, Boca Raton, 2005.

피인용 문헌

  1. Application of Nanoemulsions upon Type of Cosmetic Oils for Convergence Type of Cosmetics vol.13, pp.4, 2015, https://doi.org/10.14400/JDC.2015.13.4.369
  2. Application of Stable o/w Nanoemulsions with Skin Depigmenting Agent for Integration Type of Cosmetics vol.13, pp.4, 2015, https://doi.org/10.14400/JDC.2015.13.4.417
  3. 레조르시놀 비스-에틸헥사노에이트를 함유한 나노에멀젼의 유화제 종류에 따른 형성 vol.42, pp.1, 2013, https://doi.org/10.15230/scsk.2016.42.1.29
  4. PIC 방법으로 제조된 저점도 W/O 나노에멀젼의 안정성 vol.42, pp.2, 2016, https://doi.org/10.15230/scsk.2016.42.2.129