DOI QR코드

DOI QR Code

마이크로파 추출법을 이용한 방사선 조사 대두의 Hydrocarbons 분석 전처리조건 최적화

Optimization of Pre-Treatment Conditions for Hydrocarbons Detection from Irradiated Soybean Using Microwave-Assiated Extraction

  • 이정은 (대구과학대학교 식품영양조리과) ;
  • 권중호 (경북대학교 식품공학과)
  • Lee, Jeong-Eun (Department of Food and Nutrition and Cook, Taegu Science University) ;
  • Kwon, Joong-Ho (Department of Food Science and Technology, Kyungpook National University)
  • 투고 : 2013.12.06
  • 심사 : 2013.12.23
  • 발행 : 2013.12.30

초록

지질 함량이 많은 식품에 방사선 조사여부 판별방법으로 적용가능한 hydrocarbons법의 전처리 추출공정을 개선하고자, 추출시간을 효율화 하고 추출용매의 사용을 줄일 수 있는 마이크로웨이브 추출법을 적용하였다. 국제 교역량이 가장 높은 농산물중 대두를 대상으로 방사선 조사(4 kGy)를 하여 hydrocarbons 분석에 대한 전처리 조건을 최적화하고자 하였다. 예측된 대두의 최적 추출범위는 extraction time 1.3-3.2분, microwave power 61-133 W로 나타났고, 예측된 범위에서 임의점을 설정하여 회귀식에 대입하여 최적값을 예측하였을 때 값은 microwave power와 extraction time이 각각 97 W과 2.2 분으로 확인되었다. 방사선조사 허가식품에 대해서 검지법의 분석결과의 정확성과 더불어 신속성이 요구되는 상황에서 hydrocarbons검지법 적용이 가능한 대두를 대상으로 MAE (micarowave-assisted extraction) 추출법을 적용한다면, 식품공전상의 현행 추출전처리(12-24시간)에 따른 분석시간을 줄이고 추출공정 개선이 가능할 것으로 본다.

Microwave-assisted extraction (MAE), which is known as less time and less solvent than current extraction methods, was applied to hydrocarbons extraction from irradiated soybean. Among the transported agricultural products, soybean was selected as representative samples for possible application of irradiated treatment and identification of radiation-induced markers. Using 4 kGy-irradiated soybean, different microwave extraction conditions (extraction time and microwave power) were applied and the changes in hydrocarbon concentrations were monitored. The predicted optimum extracted condition for hydrocarbon analysis of soybean was found to be microwave extraction with a microwave power of 97 W and extraction time of 2.2 min. This extraction time was significantly lower compared to the common extraction time of 12-24hr.

키워드

참고문헌

  1. M. W. Byun, J. H. Kwon, B. S. Cha, K. H. Chung, and H. O. Cho, Control of Insects on Stored Rice Grain by Gamma Irradiation, J. Korean Agric. Chem. Soc., 31, 143 (1988).
  2. IAEA, Food and Environmental Protection Newsletter, 9, 21 (2006).
  3. IAEA, International Consultative Group on Food Irradiation, 7, 30 (2008).
  4. A. Spiegelberg, G. M. Schulzki, N. Helle, K. W. Bogl, and A. Schreiber, Methods for Routine Control of Irradiated Food : Optimization of a Method for Detection of Radiation-Induced Hydrocarbons and its Application to Various Foods, Radiat. Phys. Chem., 43, 433 (1994). https://doi.org/10.1016/0969-806X(94)90059-0
  5. K. T. Hwang, J. E. Kim, and J. S. Yang, The Identification of Post-Irradiated Soybeans by Measuring the Concentration of Hydrocarbons, Int. J. Food Sci. Technol., 40, 907 (2005). https://doi.org/10.1111/j.1365-2621.2005.01024.x
  6. P. Bhattacharjee, R. S. Singhal, A. S. Gholap, P. S. Variyar, D. R. Bongirwar, Hydrocarbons as Marker Compounds for Irradiated Cashew Nuts, Food Chem., 80, 151 (2003). https://doi.org/10.1016/S0308-8146(02)00240-6
  7. C. R, Choi and K. T. Hwang, Detection of Hydrocarbons in Irradiated and Roasted Sesame Seeds, J. Am. Oil Chem. Soc., 74, 469 (1997). https://doi.org/10.1007/s11746-997-0108-y
  8. J. R. Kavalam and W. W. Nawar, Effects of Ionizing Radiation on Some Vegetable Fats, J. Am. Oil Chem. Soc., 46, 387 (1969). https://doi.org/10.1007/BF02545620
  9. E. Lee, M. O. Kim, H. J. Lee, K. S. Kim, and J. H. Kwon, Detection Characteristics of Hydrocarbons from Irradiated Legumes of Korean and Chinese Origins, J. Korean Soc. Food Sci. Nutr., 30, 770 (2001).
  10. M. F. Dubravcic and W. W. Nawar, Effect of Free Fatty Acids on the Radiolysis of Triglycerides, J. Agric. Food Chem., 24, 1087 (1976). https://doi.org/10.1021/jf60207a026
  11. W. W. Nawar, Volatiles from Food Irradiation, Food Rev. Int., 2, 45 (1986). https://doi.org/10.1080/87559128609540788
  12. K. T. Hwang, J. H. Yoo, C. K. Kim, T. B. Uhm, S. B. Kim, and H. J. Park, Hydrocarbons Detected in Irradiated and Heat-Treated Eggs, Food Res. Int., 34, 321 (2001). https://doi.org/10.1016/S0963-9969(00)00170-8
  13. J. Y. Park and K. T. Hwang, Hydrocarbons as Markers for Identifying Postirradiated Peanuts, JAOAC., 76, 125 (1999).
  14. H. W. Chung, J. H. Hong, M. R. Marshall, Y. Jeong, and S. B. Han, Detection Properties of Irradiated Ostrich Meat by DNA Comet Assay and Radiation-Induced Hydrocarbons, J. Food Sci., 69, 399 (2004).
  15. J. H. Kwon, T. Kausar, J. Lee, H. K. Kim, and D. W. Ahn, The Microwave-Assisted Extraction of Fats from Irradiated Meat Products for the Detection of Radiation-Induced Hydrocarbons, Food Sci. Biotechnol., 16, 150 (2007).
  16. K. T. Hwang, J. E. Kim, J. N. Park, and J. S. Yang, Effects of Roasting, Powdering and Storing Irradiated Soybeans on Hydrocarbon Detection for Identifying Post-Irradiation of Soybeans, Food Chem., 102, 263 (2007). https://doi.org/10.1016/j.foodchem.2006.05.015
  17. H. Berg, M. Margard, G. Johanson, and L. Mathiasson, Development of a Supercritical Fluid Extraction Method for Determination of Lipid Classes and Total Fat in Meats and its Comparison with Conventional Methods, J. Chromatogr. A, 785, 345 (1997). https://doi.org/10.1016/S0021-9673(97)00686-9
  18. E. Depedro, M. Casillas, and C. M. Miranda. Microwave Oven Application in the Extraction of Fat from the Subcutaneous Tissue of Iberian Pig Ham, Meat Sci., 45, 45 (1997). https://doi.org/10.1016/S0309-1740(96)00097-6
  19. C. R. Buffler and M. A. Stanford, Effects of Dielectric and Thermal Properties on the Microwave Heating of Foods, Microwave World, 16, 5 (1995).
  20. J. Giese, Advances in Microwave Food Processing, Food Technol., 46, 118 (1992).
  21. V. Lopez-Avila, R. Young, and N. Teplitsky, Microwave-Assisted Extraction as an Alternative to Soxhlet, Sonication, and Supercritical Fluid Extraction, J. AOAC Int., 79, 143 (1996).
  22. N. Gontard, S. Guilbert, and J. L. Cuq, Edible Wheat Gluten Films : Influence of the Main Process Variables on Film Properties Using Response Surface Methodology, J. Food Sci., 57, 190 (1992). https://doi.org/10.1111/j.1365-2621.1992.tb05453.x
  23. L. D. Metcalf, A. A. Schmitz, and J. R. Pelka, Rapid Preparation of Fatty Acid Esters from Lipid for Gas Chromatographic Analysis, Anal. Chem., 38, 514 (1996).
  24. EN 1784, Foodstuffs - Detection of Irradiated Food Containing Fat, Gas Chromatographic Analysis of Hydrocarbons, European Committee for Standardization, Brussels, Belgium (2003).