DOI QR코드

DOI QR Code

Pull-in instability of electrically actuated poly-SiGe graded micro-beams

  • Jia, Xiao L. (College of Mechanical and Transportation Engineering, China University of Petroleum-Beijing) ;
  • Zhang, Shi M. (College of Mechanical and Transportation Engineering, China University of Petroleum-Beijing) ;
  • Yang, Jie (School of Aerospace, Mechanical and Manufacturing Engineering, RMIT University) ;
  • Kitipornchai, Sritawat (School of Civil Engineering, The University of Queensland)
  • Received : 2013.05.24
  • Accepted : 2013.07.24
  • Published : 2013.09.25

Abstract

This paper investigates the pull-in instability of functionally graded poly-SiGe micro-beams under the combined electrostatic and intermolecular forces and temperature change. The exponential distribution model and Voigt model are used to analyze the functionally graded materials (FGMs). Principle of virtual work is used to derive the nonlinear governing differential equation which is then solved using differential quadrature method (DQM). A parametric study is conducted to show the significant effects of material composition, geometric nonlinearity, temperature change and intermolecular Casimir force.

Keywords

Acknowledgement

Supported by : Science Foundation of China University of Petroleum

References

  1. Abdel-Rahman, E.M., Younis, M.I. and Nayfeh, A.H. (2002), "Characterization of the mechanical behavior of an electrically actuated microbeam", J. Micromech. Microeng., 12(6), 759-766. https://doi.org/10.1088/0960-1317/12/6/306
  2. Batra, R.C., Porfiri, M. and Spinello, D. (2006), "Electromechanical model of electrically actuated narrow microbeams", J. Microelectromech. S., 15(5), 1175-1189. https://doi.org/10.1109/JMEMS.2006.880204
  3. Batra, R.C., Porfiri, M. and Spinello, D. (2008a), "Vibrations of narrow microbeams predeformed by an electric field", J. Sound Vib., 309(3-5), 600-612. https://doi.org/10.1016/j.jsv.2007.07.030
  4. Batra, R.C., Porfiri, M. and Spinello, D. (2008b), "Reduced-order models for microelectromechanical rectangular and circular plates incorporating the Casimir force", Int. J. Solids Struct., 45(11-15), 3558-3583. https://doi.org/10.1016/j.ijsolstr.2008.02.019
  5. Birman, V. and Byrd, L.W. (2007), "Modeling and analysis of functionally graded materials and structures", Appl. Mech. Rev., 60(5), 195-216. https://doi.org/10.1115/1.2777164
  6. Carbonari, R.C., Silva, E.C.N. and Paulino, G.H. (2009), "Multi-actuated functionally graded piezoelectric micro-tools design: A multiphysics topology optimization approach", Int. J. Numer. Meth. Eng., 77(3), 301-336. https://doi.org/10.1002/nme.2403
  7. Craciunescu, C.M. and Wuttig, M. (2003), "New ferromagnetic and functionally graded shape memory alloys", J. Optoelectron. Adv. M., 5(1), 139-146.
  8. Erdogan, F. and Wu, B.H. (1997), "The surface crack problem for a plate with functionally graded properties", J. Appl. Mech.-T. ASME, 64(3), 449-456. https://doi.org/10.1115/1.2788914
  9. Fu, Y.Q., Du, H.J. and Zhang, S. (2003), "Functionally graded TiN/TiNi shape memory alloy films", Mater. Lett., 57(20), 2995-2999. https://doi.org/10.1016/S0167-577X(02)01419-2
  10. Ganguly, P. and Desiraju, G.R. (2008), "Van der Waals and polar intermolecular contact distances: Quantifying supramolecular synthons", Chem.-Asian J., 3(5), 868-880. https://doi.org/10.1002/asia.200700343
  11. Gromova, M., Mehta, A., Baert, K. and Witvrouw, A. (2006), "Characterization and strain gradient optimization of PECVD poly-SiGe layers for MEMS applications", Sens. Actuators A., 130, 403-410. 2006.
  12. Gupta, R.K. (1997), Electrostatic Pull-in Test Structure Design for In-situ Mechanical Property Measurements of Microelectromechanical Systems, Ph.D. dissertation, MIT, Cambridge, UK.
  13. Hasanyan, D.J., Batra, R.C. and Harutyunyan, S. (2008), "Pull-in instabilities in functionally graded microthermoelectromechanical systems", J. Therm. Stresses, 31(10), 1006-1021. https://doi.org/10.1080/01495730802250714
  14. Huang, J.M., Liew, K.M., Wong, C.H., Rajendran, S., Tan, M.J. and Liu, A.Q. (2001), "Mechanical design and optimization of capacitive micro machined switch", Sens. Actuators A., 93(3), 273-285. https://doi.org/10.1016/S0924-4247(01)00662-8
  15. Jia, X.L., Yang, J. and Kitipornchai, S. (2010), "Characterization of FGM micro-switches under electrostatic and Casimir forces", IOP Conf. Ser. Mater. Sci. Eng., 10, 012018.
  16. Jia, X.L., Yang, J. and Kitipornchai, S. (2011), "Pull-in instability of geometrically nonlinear micro-switches under electrostatic and Casmir forces", Acta Mech., 218(1-2), 161-174. https://doi.org/10.1007/s00707-010-0412-8
  17. Lamoreaux, S.K. (2005), "The Casimir force: background, experiments, and applications", Rep. Prog. Phys., 68(1), 201-236. https://doi.org/10.1088/0034-4885/68/1/R04
  18. Legtenberg, R. and Tilmans, H.A.C. (1994), "Electrostatically driven vacuum-encapsulated polysilicon resonators, Part I: Design and Fabrication", Sens. Actuators A., 45(1), 57-66. https://doi.org/10.1016/0924-4247(94)00812-4
  19. Mobki, H., Rezazadeh, G., Sadeghi, M. and Vakili-Tahami, F. (2013), "A comprehensive study of stability in an electro-statically actuated micro-beam", Int. J. Nonlinear Mech., 48, 78-85. https://doi.org/10.1016/j.ijnonlinmec.2012.08.002
  20. Mohammadi-Alasti, B., Rezazadeh, G., Borgheei, A.M., Minaei, S. and Habibifar, R. (2011), "On the mechanical behavior of a functionally graded micro-beam subjected to a thermal moment and nonlinear electrostatic pressure", Compos. Struct., 93(6), 1516-1525. https://doi.org/10.1016/j.compstruct.2010.11.013
  21. Nabian, A., Rezazadeh, G., Almassi, M. and Borgheei, A.M. (2013), "On the stability of a functionally graded rectangular micro-plate subjected to hydrostatic and nonlinear electrostatic pressures", Acta Mech. Solida Sin., 26(2), 205-220. https://doi.org/10.1016/S0894-9166(13)60020-8
  22. Sharafkhani, N., Rezazadeh, G. and Shabani, R. (2012), "Study of mechanical behavior of circular FGM micro-plates under nonlinear electrostatic and mechanical shock loadings", Acta Mech., 223(3), 579-591. https://doi.org/10.1007/s00707-011-0576-x
  23. Shu, C. (2000), Differential quadrature and its application in engineering: engineering applications, Springer, Verlag, London.
  24. Tilmans, H.A.C. and Legtenberg, R. (1994), "Electrostatically driven vacuum-encapsulated polysilicon resonators, Part II: Theory and performance", Sensor Actuat. A-Phys., 45(1), 67-84. https://doi.org/10.1016/0924-4247(94)00813-2
  25. Witvrouw, A. and Mehta, A. (2005), "The use of functionally graded poly-SiGe layers for MEMS applications", Mater. Sci. Forum., 492, 255-260.
  26. Yang, J., Liew, K.M. and Kitipornchai, S. (2005), "Second-order statistics of the elastic buckling of functionally graded rectangular plates", Compos. Sci. Technol., 65(7-8), 1165-1175. https://doi.org/10.1016/j.compscitech.2004.11.012
  27. Yang, J., Liew, K.M., Wu, Y.F. and Kitipornchai, S. (2006), "Thermo-mechanical post-bulkling of FGM cylindrical panels with temperature-dependent properties", Int. J. Solids Struct., 43(2), 307-324. https://doi.org/10.1016/j.ijsolstr.2005.04.001
  28. Yang, J. and Xiang, H.J. (2007), "Thermo-electro-mechanical characteristics of functionally graded piezoelectric actuators", Smart Mater. Struct., 16(3),784-797. https://doi.org/10.1088/0964-1726/16/3/028

Cited by

  1. Vibration control in wind turbines for performance enhancement: A comparative study vol.22, pp.1, 2016, https://doi.org/10.12989/was.2016.22.1.107
  2. On static stability of electro-magnetically affected smart magneto-electro-elastic nanoplates vol.7, pp.1, 2013, https://doi.org/10.12989/anr.2019.7.1.063
  3. Static stability analysis of smart nonlocal thermo-piezo-magnetic plates via a quasi-3D formulation vol.26, pp.1, 2020, https://doi.org/10.12989/sss.2020.26.1.077
  4. Post-buckling analysis of imperfect nonlocal piezoelectric beams under magnetic field and thermal loading vol.78, pp.1, 2013, https://doi.org/10.12989/sem.2021.78.1.015