DOI QR코드

DOI QR Code

Quantitative Assessment and Ligament Traceability of Volume Isotropic Turbo Spin Echo Acquisition (VISTA) Ankle Magnetic Resonance Imaging: Fat Suppression versus without Fat Suppression

발목관절 VISTA 자기공명영상에서 정량평가와 인대의 Traceability: 지방억제 대비 지방억제기법

  • Cho, Kyung Eun (Department of Radiology, Gangnam Severance Hospital, Yonsei University) ;
  • Yoon, Choon-Sik (Department of Radiology, Gangnam Severance Hospital, Yonsei University) ;
  • Song, Ho-Taek (Department of Radiology, Severance Hospital, Yonsei University College of Medicine) ;
  • Lee, Young Han (Department of Radiology, Severance Hospital, Yonsei University College of Medicine) ;
  • Lim, Daekeon (Department of Radiology, Severance Hospital, Yonsei University College of Medicine) ;
  • Suh, Jin-Suck (Department of Radiology, Severance Hospital, Yonsei University College of Medicine) ;
  • Kim, Sungjun (Department of Radiology, Gangnam Severance Hospital, Yonsei University)
  • 조경은 (연세대학교 강남세브란스병원 영상의학과) ;
  • 윤춘식 (연세대학교 강남세브란스병원 영상의학과) ;
  • 송호택 (연세대학교 세브란스병원 영상의학과) ;
  • 이영한 (연세대학교 세브란스병원 영상의학과) ;
  • 임대건 (연세대학교 세브란스병원 영상의학과) ;
  • 서진석 (연세대학교 세브란스병원 영상의학과) ;
  • 김성준 (연세대학교 강남세브란스병원 영상의학과)
  • Received : 2013.03.15
  • Accepted : 2013.05.03
  • Published : 2013.06.30

Abstract

Purpose : To compare the image quality and ligament traceability in ankle images obtained using Volume Isotropic Turbo Spin Echo Acquisition (VISTA) MRI with and without fat suppression. Materials and Methods: The signal-to-noise ratios (SNRs) in images from a phantom and from the ankle of a volunteer were compared. Ten ankles from 10 non-symptomatic volunteers were imaged for comparisons of contrast ratio (CR) and ligament traceability. All examinations were performed using VISTA sequences with and without fat suppression on a 3T MRI scanner. The SNRs were obtained from images with subjects and without subjects (noise-only). Contrast ratios from images of the 10 ankles were acquired between fluid and tendon (F-T), F-cartilage (C), F-ligament (L), fat (f)-T, f-C and f-L. Two musculoskeletal radiologists independently scored the traceability of 7 ligaments, in sagittal, axial and coronal images respectively, based on a 4-point scale (1 as not traceable through 4 as clearly traceable). The Wilcoxon signed-rank test was used to compare the CR. Fisher's exact test and Pearson's chi-squared test were used to compare the ligament traceability. Results: The SNRs did not differ significantly between the two sequences except in bone marrow. VISTA SPAIR showed the higher CR only in F-T (p = 0.04), whereas VISTA showed higher CR in f-T (p = 0.005), f-C (p = 0.005) and f-L (p = 0.005). The calcaneofibular ligament traceability with VISTA was superior to that obtained with VISTA SPAIR (p < 0.05) in all planes. Conclusion: VISTA showed significant superiority to VISTA SPAIR in tracing CFL due to the superior CR between fat and ligament.

목적: 발목관절 VISTA 자기공명영상을 이용하여 지방억제를 한 것과 하지 않은 VISTA 사이에서 정량평가를 하며, 발목 인대의 traceability 차이를 알아보고자 하였다. 대상과 방법: SNR의 비교를 위해 팬텀과 한명의 자원자에서 자기공명영상을 촬영하였다. CR (contrast ratio)과 인대 traceability 비교를 위해 발목 관절의 외상 과거력이 없는 10명의 자원자에서 자기공명영상을 촬영하였다. 모든 자기공명영상은 VISTA를 이용하였고 3T에서 촬영하였다. 지방억제는 SPAIR (Spectral Attenuated Inversion Recovery) 기법을 이용하였다. SNR은 피검자가 있을 때와 피검자 없이 촬영한 것으로 구하였다. CR은 열개의 오른쪽 발목관절의 관절액-힘줄, 관절액-연골, 관절액-인대, 지방-힘줄, 지방-연골, 지방-인대의 신호강도를 얻어 구하였다. 두 명의 근골격계 영상의학과 의사가 지방억제를 한 것과 하지 않은 영상을 calcaneofibular ligament (CFL)을 포함한 7개의 발목관절 인대에 대해서 점수를 매겼다 (1, not traceable; 2, barely traceable; 3, adequately traceable; 4, excellently traceable). VISTA 와 VISTA SPAIR 사이에 CR을 비교하는 데는 Wilcoxon signed-rank test를 이용하였다. VISTA 와 VISTA SPAIR사이에 인대 traceability를 비교하는 데에는 Fisher's exact test와 Pearson's chi-squared test를 이용하였다. 결과: 정량평가의 SNR을 보면 지방억제를 하지 않은 영상에 비해 지방억제를 한 자원자의 골수에서 더 낮은 수치를 나타내었다. (7.65 versus [vs.] 36.64). 관절액, 연골, 근육에서는 두 연쇄간에 SNR의 차이가 없었다. 지방억제 VISTA는 관절액-인대 사이 CR만 더 나은 결과를 보여주었지만 (p=0.04) VISTA는 지방-힘줄, 지방-연골, 지방-인대 간에서 모두 더 나은 CR값을 나타내었다(P=0.005). CFL 인대만 통계학적으로 의미 있는 값을 보였는데 지방억제를 하지 않은 VISTA 영상에서 traceability의 값이 더 우세 하였다(p <0.05). 결론: 지방 억제를 한 VISTA와 하지 않은 VISTA에서 유의한 SNR 차이는 골수를 제외하고 없었다. 지방억제를 하지 않은 VISTA에서 CFL을 trace하는데 있어서 더 유리하였다.

Keywords

References

  1. Fong DT, Hong Y, Chan L, Yung PS, Chan K. A systematic review on ankle injury and ankle sprain in sports. Sports Medicine 2007;37:73-94 https://doi.org/10.2165/00007256-200737010-00006
  2. Kim HS, Yoon YC, Kwon JW, Choe B. Qualitative and quantitative assessment of isotropic ankle magnetic resonance imaging: three-dimensional isotropic intermediate-weighted turbo spin echo versus three-dimensional isotropic fast field echo sequences. Korean J Radiol 2012;13:443-449 https://doi.org/10.3348/kjr.2012.13.4.443
  3. Gold GE, Chen CA, Koo S, Hargreaves BA, Bangerter NK. Recent advances in MRI of articular cartilage. AJR Am J Roentgenol 2009;193:628-638 https://doi.org/10.2214/AJR.09.3042
  4. Stevens KJ, Busse RF, Han E, et al. Ankle: isotropic MR imaging with 3D-FSE-cube--initial experience in healthy volunteers. Radiology 2008;249:1026-1033 https://doi.org/10.1148/radiol.2493080227
  5. Yao L, Pitts JT, Thomasson D. Isotropic 3D fast spin-echo with proton-density-like contrast: a comprehensive approach to musculoskeletal MRI. AJR Am J Roentgenol 2007;188:W199-201 https://doi.org/10.2214/AJR.06.0556
  6. Gold GE, Busse RF, Beehler C, et al. Isotropic MRI of the knee with 3D fast spin-echo extended echo-train acquisition (XETA): initial experience. AJR Am J Roentgenol 2007;188:1287-1293 https://doi.org/10.2214/AJR.06.1208
  7. Jung JY, Yoon YC, Kwon JW, Ahn JH, Choe BK. Diagnosis of internal derangement of the knee at 3.0-T MR imaging: 3D isotropic intermediate-weighted versus 2D sequences. Radiology 2009;253:780-787 https://doi.org/10.1148/radiol.2533090457
  8. Ristow O, Stehling C, Krug R, et al. Isotropic 3-dimensional fast spin echo imaging versus standard 2-dimensional imaging at 3.0 T of the knee: artificial cartilage and meniscal lesions in a porcine model. J Comput Assist Tomogr 2010;34:260-269 https://doi.org/10.1097/RCT.0b013e3181c20f6d
  9. Notohamiprodjo M, Horng A, Pietschmann MF, et al. MRI of the knee at 3T: first clinical results with an isotropic PDfsweighted 3D-TSE-sequence. Invest Radiol 2009;44:585-597 https://doi.org/10.1097/RLI.0b013e3181b4c1a1
  10. Jung JY, Yoon YC, Choi S, Kwon JW, Yoo J, Choe B. Threedimensional isotropic shoulder MR arthrography: comparison with two-dimensional MR arthrography for the diagnosis of labral lesions at 3.0 T. Radiology 2009;250:498-505 https://doi.org/10.1148/radiol.2493071548
  11. Choo HJ, Lee SJ, Kim O, Seo SS, Kim JH. Comparison of threedimensional isotropic T1-weighted fast spin-echo MR arthrography with two-dimensional MR arthrography of the shoulder. Radiology 2012;262:921-931 https://doi.org/10.1148/radiol.11111261
  12. Notohamiprodjo M, Kuschel B, Horng A, et al. 3D-MRI of the ankle with optimized 3D-SPACE. Invest Radiol 2012;47:231-239 https://doi.org/10.1097/RLI.0b013e31823d7946
  13. Delfaut EM, Beltran J, Johnson G, Rousseau J, Marchandise X, Cotten A. Fat suppression in MR imaging: techniques and pitfalls. Radiographics 1999;19:373-382 https://doi.org/10.1148/radiographics.19.2.g99mr03373
  14. Lee S, Jee W, Kim SK, Kim J. Proton density-weighted MR imaging of the knee: fat suppression versus without fat suppression. Skeletal Radiology 2011;40:189-195 https://doi.org/10.1007/s00256-010-0969-2
  15. Schafer FK, Schfer PJ, Brossmann J, et al. Value of fat-suppressed proton-density-weighted turbo spin-echo sequences in detecting meniscal lesions: comparison with arthroscopy. Acta Radiol 2006;47:385-390 https://doi.org/10.1080/02841850600570482
  16. Seo JM, Yoon YC, Kwon JW. 3D isotropic turbo spin-echo intermediate-weighted sequence with refocusing control in knee imaging: comparison study with 3D isotropic fast-field echo sequence. Acta Radiol 2011;52:1119-1124 https://doi.org/10.1258/ar.2011.110328
  17. Dietrich O, Raya JG, Reeder SB, Reiser MF, Schoenberg SO. Measurement of signal-to-noise ratios in MR images: influence of multichannel coils, parallel imaging, and reconstruction filters. J Magn Reson Imaging 2007;26:375-385 https://doi.org/10.1002/jmri.20969
  18. Viera AJ, Garrett JM. Understanding interobserver agreement: the kappa statistic. Fam Med 2005;37:360-363
  19. Gudbjartsson H, Patz S. The Rician distribution of noisy MRI data. Magn Reson Med 1995;34:910-914 https://doi.org/10.1002/mrm.1910340618
  20. Nelles M, Konig RS, Gieseke J, et al. Dual-source parallel RF transmission for clinical MR imaging of the spine at 3.0 T: intraindividual comparison with conventional single-source transmission. Radiology 2010;257:743-753 https://doi.org/10.1148/radiol.10092146
  21. Turetschek K, Wunderbaldinger P, Bankier AA, et al. Double inversion recovery imaging of the brain: initial experience and comparison with fluid attenuated inversion recovery imaging. Magn Reson Imaging 1998;16:127-135 https://doi.org/10.1016/S0730-725X(97)00254-3
  22. Crewson PE. Reader agreement studies. AJR Am J Roentgenol 2005;184:1391-1397 https://doi.org/10.2214/ajr.184.5.01841391
  23. Kundel HL, Polansky M. Measurement of observer agreement. Radiology 2003;228:303-308 https://doi.org/10.1148/radiol.2282011860
  24. Wang Z, Fernndez-Seara MA. 2D partially parallel imaging with k-space surrounding neighbors-based data reconstruction. Magn Reson Med 2006;56:1389-1396 https://doi.org/10.1002/mrm.21078
  25. Noll DC, Nishimura DG, Macovski A. Homodyne detection in magnetic resonance imaging. IEEE Transactions on Medical Imaging 1991;10:154-163 https://doi.org/10.1109/42.79473
  26. Singson RD, Hoang T, Dan S, Friedman M. MR evaluation of rotator cuff pathology using T2-weighted fast spin-echo technique with and without fat suppression. AJR Am J Roentgenol 1996;166:1061-1065 https://doi.org/10.2214/ajr.166.5.8615243
  27. Chimich D, Frank C, Shrive N, Dougall H, Bray R. The effects of initial end contact on medial collateral ligament healing: a morphological and biomechanical study in a rabbit model. J Orthop Res 1991;9:37-47 https://doi.org/10.1002/jor.1100090106
  28. Brostrm L, Sundelin P. Sprained ankles. IV. Histologic changes in recent and "chronic" ligament ruptures. Acta Chir Scand 1966;132:248-253
  29. Datir A, Connell D. Imaging of impingement lesions in the ankle. Top Magn Reson Imaging 2010;21:15-23 https://doi.org/10.1097/RMR.0b013e31820ef46b
  30. Kitsoulis P, Marini A, Pseftinakou A, Iliou K, Galani V, Paraskevas G. Morphological study of the calcaneofibular ligament in cadavers. Folia Morphol 2011;70:180-184
  31. Dimmick S, Kennedy D, Daunt N. Evaluation of thickness and appearance of anterior talofibular and calcaneofibular ligaments in normal versus abnormal ankles with MRI. J Med Imaging Radiat Oncol 2008;52:559-563 https://doi.org/10.1111/j.1440-1673.2008.02018.x
  32. Mirowitz SA, Shu HH. MR imaging evaluation of knee collateral ligaments and related injuries: comparison of T1-weighted, T2-weighted, and fat-saturated T2-weighted sequences--correlation with clinical findings. J Magn Reson Imaging 1994;4:725-732 https://doi.org/10.1002/jmri.1880040516
  33. Schneck CD, Mesgarzadeh M, Bonakdarpour A. MR imaging of the most commonly injured ankle ligaments. Part II. Ligament injuries. Radiology 1992;184:507-512 https://doi.org/10.1148/radiology.184.2.1620856
  34. Cass JR, Morrey BF. Ankle instability: current concepts, diagnosis, and treatment. Mayo Clinic proceedings 1984;59:165-170 https://doi.org/10.1016/S0025-6196(12)60769-1
  35. Kumar V. Deficiencies of MRI in the diagnosis of chronic symptomatic lateral ankle ligament injuries. Foot and ankle surgery 2007;13:171-176 https://doi.org/10.1016/j.fas.2007.04.002
  36. Park HJ, Cha SD, Kim SS, et al. Accuracy of MRI findings in chronic lateral ankle ligament injury: comparison with surgical findings. Clin Radiol 2012;67:313-318 https://doi.org/10.1016/j.crad.2011.08.025

Cited by

  1. T1 강조 경추자기공명영상에 대한 최적의 지방소거기법의 정량적 평가: TSE-CHESS 과 TSE-SPAIR 의 비교 vol.11, pp.11, 2013, https://doi.org/10.14400/jdpm.2013.11.11.529
  2. Three-Dimensional Fast Spin-Echo Imaging without Fat Suppression of the Knee: Diagnostic Accuracy Comparison to Fat-Suppressed Imaging on 1.5T MRI vol.58, pp.6, 2017, https://doi.org/10.3349/ymj.2017.58.6.1186