References
- Fong DT, Hong Y, Chan L, Yung PS, Chan K. A systematic review on ankle injury and ankle sprain in sports. Sports Medicine 2007;37:73-94 https://doi.org/10.2165/00007256-200737010-00006
- Kim HS, Yoon YC, Kwon JW, Choe B. Qualitative and quantitative assessment of isotropic ankle magnetic resonance imaging: three-dimensional isotropic intermediate-weighted turbo spin echo versus three-dimensional isotropic fast field echo sequences. Korean J Radiol 2012;13:443-449 https://doi.org/10.3348/kjr.2012.13.4.443
- Gold GE, Chen CA, Koo S, Hargreaves BA, Bangerter NK. Recent advances in MRI of articular cartilage. AJR Am J Roentgenol 2009;193:628-638 https://doi.org/10.2214/AJR.09.3042
- Stevens KJ, Busse RF, Han E, et al. Ankle: isotropic MR imaging with 3D-FSE-cube--initial experience in healthy volunteers. Radiology 2008;249:1026-1033 https://doi.org/10.1148/radiol.2493080227
- Yao L, Pitts JT, Thomasson D. Isotropic 3D fast spin-echo with proton-density-like contrast: a comprehensive approach to musculoskeletal MRI. AJR Am J Roentgenol 2007;188:W199-201 https://doi.org/10.2214/AJR.06.0556
- Gold GE, Busse RF, Beehler C, et al. Isotropic MRI of the knee with 3D fast spin-echo extended echo-train acquisition (XETA): initial experience. AJR Am J Roentgenol 2007;188:1287-1293 https://doi.org/10.2214/AJR.06.1208
- Jung JY, Yoon YC, Kwon JW, Ahn JH, Choe BK. Diagnosis of internal derangement of the knee at 3.0-T MR imaging: 3D isotropic intermediate-weighted versus 2D sequences. Radiology 2009;253:780-787 https://doi.org/10.1148/radiol.2533090457
- Ristow O, Stehling C, Krug R, et al. Isotropic 3-dimensional fast spin echo imaging versus standard 2-dimensional imaging at 3.0 T of the knee: artificial cartilage and meniscal lesions in a porcine model. J Comput Assist Tomogr 2010;34:260-269 https://doi.org/10.1097/RCT.0b013e3181c20f6d
- Notohamiprodjo M, Horng A, Pietschmann MF, et al. MRI of the knee at 3T: first clinical results with an isotropic PDfsweighted 3D-TSE-sequence. Invest Radiol 2009;44:585-597 https://doi.org/10.1097/RLI.0b013e3181b4c1a1
- Jung JY, Yoon YC, Choi S, Kwon JW, Yoo J, Choe B. Threedimensional isotropic shoulder MR arthrography: comparison with two-dimensional MR arthrography for the diagnosis of labral lesions at 3.0 T. Radiology 2009;250:498-505 https://doi.org/10.1148/radiol.2493071548
- Choo HJ, Lee SJ, Kim O, Seo SS, Kim JH. Comparison of threedimensional isotropic T1-weighted fast spin-echo MR arthrography with two-dimensional MR arthrography of the shoulder. Radiology 2012;262:921-931 https://doi.org/10.1148/radiol.11111261
- Notohamiprodjo M, Kuschel B, Horng A, et al. 3D-MRI of the ankle with optimized 3D-SPACE. Invest Radiol 2012;47:231-239 https://doi.org/10.1097/RLI.0b013e31823d7946
- Delfaut EM, Beltran J, Johnson G, Rousseau J, Marchandise X, Cotten A. Fat suppression in MR imaging: techniques and pitfalls. Radiographics 1999;19:373-382 https://doi.org/10.1148/radiographics.19.2.g99mr03373
- Lee S, Jee W, Kim SK, Kim J. Proton density-weighted MR imaging of the knee: fat suppression versus without fat suppression. Skeletal Radiology 2011;40:189-195 https://doi.org/10.1007/s00256-010-0969-2
- Schafer FK, Schfer PJ, Brossmann J, et al. Value of fat-suppressed proton-density-weighted turbo spin-echo sequences in detecting meniscal lesions: comparison with arthroscopy. Acta Radiol 2006;47:385-390 https://doi.org/10.1080/02841850600570482
- Seo JM, Yoon YC, Kwon JW. 3D isotropic turbo spin-echo intermediate-weighted sequence with refocusing control in knee imaging: comparison study with 3D isotropic fast-field echo sequence. Acta Radiol 2011;52:1119-1124 https://doi.org/10.1258/ar.2011.110328
- Dietrich O, Raya JG, Reeder SB, Reiser MF, Schoenberg SO. Measurement of signal-to-noise ratios in MR images: influence of multichannel coils, parallel imaging, and reconstruction filters. J Magn Reson Imaging 2007;26:375-385 https://doi.org/10.1002/jmri.20969
- Viera AJ, Garrett JM. Understanding interobserver agreement: the kappa statistic. Fam Med 2005;37:360-363
- Gudbjartsson H, Patz S. The Rician distribution of noisy MRI data. Magn Reson Med 1995;34:910-914 https://doi.org/10.1002/mrm.1910340618
- Nelles M, Konig RS, Gieseke J, et al. Dual-source parallel RF transmission for clinical MR imaging of the spine at 3.0 T: intraindividual comparison with conventional single-source transmission. Radiology 2010;257:743-753 https://doi.org/10.1148/radiol.10092146
- Turetschek K, Wunderbaldinger P, Bankier AA, et al. Double inversion recovery imaging of the brain: initial experience and comparison with fluid attenuated inversion recovery imaging. Magn Reson Imaging 1998;16:127-135 https://doi.org/10.1016/S0730-725X(97)00254-3
- Crewson PE. Reader agreement studies. AJR Am J Roentgenol 2005;184:1391-1397 https://doi.org/10.2214/ajr.184.5.01841391
- Kundel HL, Polansky M. Measurement of observer agreement. Radiology 2003;228:303-308 https://doi.org/10.1148/radiol.2282011860
- Wang Z, Fernndez-Seara MA. 2D partially parallel imaging with k-space surrounding neighbors-based data reconstruction. Magn Reson Med 2006;56:1389-1396 https://doi.org/10.1002/mrm.21078
- Noll DC, Nishimura DG, Macovski A. Homodyne detection in magnetic resonance imaging. IEEE Transactions on Medical Imaging 1991;10:154-163 https://doi.org/10.1109/42.79473
- Singson RD, Hoang T, Dan S, Friedman M. MR evaluation of rotator cuff pathology using T2-weighted fast spin-echo technique with and without fat suppression. AJR Am J Roentgenol 1996;166:1061-1065 https://doi.org/10.2214/ajr.166.5.8615243
- Chimich D, Frank C, Shrive N, Dougall H, Bray R. The effects of initial end contact on medial collateral ligament healing: a morphological and biomechanical study in a rabbit model. J Orthop Res 1991;9:37-47 https://doi.org/10.1002/jor.1100090106
- Brostrm L, Sundelin P. Sprained ankles. IV. Histologic changes in recent and "chronic" ligament ruptures. Acta Chir Scand 1966;132:248-253
- Datir A, Connell D. Imaging of impingement lesions in the ankle. Top Magn Reson Imaging 2010;21:15-23 https://doi.org/10.1097/RMR.0b013e31820ef46b
- Kitsoulis P, Marini A, Pseftinakou A, Iliou K, Galani V, Paraskevas G. Morphological study of the calcaneofibular ligament in cadavers. Folia Morphol 2011;70:180-184
- Dimmick S, Kennedy D, Daunt N. Evaluation of thickness and appearance of anterior talofibular and calcaneofibular ligaments in normal versus abnormal ankles with MRI. J Med Imaging Radiat Oncol 2008;52:559-563 https://doi.org/10.1111/j.1440-1673.2008.02018.x
- Mirowitz SA, Shu HH. MR imaging evaluation of knee collateral ligaments and related injuries: comparison of T1-weighted, T2-weighted, and fat-saturated T2-weighted sequences--correlation with clinical findings. J Magn Reson Imaging 1994;4:725-732 https://doi.org/10.1002/jmri.1880040516
- Schneck CD, Mesgarzadeh M, Bonakdarpour A. MR imaging of the most commonly injured ankle ligaments. Part II. Ligament injuries. Radiology 1992;184:507-512 https://doi.org/10.1148/radiology.184.2.1620856
- Cass JR, Morrey BF. Ankle instability: current concepts, diagnosis, and treatment. Mayo Clinic proceedings 1984;59:165-170 https://doi.org/10.1016/S0025-6196(12)60769-1
- Kumar V. Deficiencies of MRI in the diagnosis of chronic symptomatic lateral ankle ligament injuries. Foot and ankle surgery 2007;13:171-176 https://doi.org/10.1016/j.fas.2007.04.002
- Park HJ, Cha SD, Kim SS, et al. Accuracy of MRI findings in chronic lateral ankle ligament injury: comparison with surgical findings. Clin Radiol 2012;67:313-318 https://doi.org/10.1016/j.crad.2011.08.025
Cited by
- T1 강조 경추자기공명영상에 대한 최적의 지방소거기법의 정량적 평가: TSE-CHESS 과 TSE-SPAIR 의 비교 vol.11, pp.11, 2013, https://doi.org/10.14400/jdpm.2013.11.11.529
- Three-Dimensional Fast Spin-Echo Imaging without Fat Suppression of the Knee: Diagnostic Accuracy Comparison to Fat-Suppressed Imaging on 1.5T MRI vol.58, pp.6, 2017, https://doi.org/10.3349/ymj.2017.58.6.1186