DOI QR코드

DOI QR Code

Preoperative Prediction of Ductal Carcinoma in situ Underestimation of the Breast using Dynamic Contrast Enhanced and Diffusion-weighted Imaging

역동적 유방 자기공명 영상 및 확산 강조영상을 이용한 관상피내암종 저평가 수술전 예측

  • Park, Mina (Department of Radiology and Research Institute of Radiological Science, Severance Hospital, Yonsei University, College of Medicine) ;
  • Kim, Eun-Kyung (Department of Radiology and Research Institute of Radiological Science, Severance Hospital, Yonsei University, College of Medicine) ;
  • Kim, Min Jung (Department of Radiology and Research Institute of Radiological Science, Severance Hospital, Yonsei University, College of Medicine) ;
  • Moon, Hee Jung (Department of Radiology and Research Institute of Radiological Science, Severance Hospital, Yonsei University, College of Medicine)
  • 박미나 (연세대학교 의과대학 세브란스병원 영상의학과) ;
  • 김은경 (연세대학교 의과대학 세브란스병원 영상의학과) ;
  • 김민정 (연세대학교 의과대학 세브란스병원 영상의학과) ;
  • 문희정 (연세대학교 의과대학 세브란스병원 영상의학과)
  • Received : 2012.12.24
  • Accepted : 2013.04.17
  • Published : 2013.06.30

Abstract

Objective: To investigate roles of dynamic contrast enhanced magnetic resonance (DCE MR) and diffusion-weighted (DW) imaging in preoperative prediction of underestimation of ductal carcinoma in situ (DCIS) ${\geq}2cm$ on US guided core needle biopsy. Materials and Methods: Twenty two patients with DCIS on US-guided 14 gauge core needle biopsy were included. Patients were divided into a group with and without DCIS underestimation based on histopathology. MR images including DCE and DW imaging were obtained with a 3.0-T MR. The lesion type (mass or non-mass), enhancement pattern, peak enhancement, and apparent diffusion coefficient (ADC) values of proven malignant masses were generated using software of CADstream and compared between two groups using Fisher's exact test and Mann Whitney test. Results: Eight patients were in the group with underestimation and 14 patients were in the group without underestimation. The lesion type and enhancement pattern were not different between two groups (P values = 1.000 and 0.613, respectively). The median peak enhancement of lesions with underestimation was 159.5%, higher than 133.5% of those without underestimation, but not significant (P value = 0.413). The median ADC value of lesions with underestimation was $1.26{\times}10^{-3}mm^2/sec$, substantially lower than $1.35{\times}10^{-3}mm^2/sec$ of those without underestimation (P value = 0.094). Conclusion: ADC values had the potential to preoperatively predict DCIS underestimation on US-guided core needle biopsy, although a large prospective series study should be conducted to confirm these results.

목적: 초음파 유도 하 중심부 침생검으로 진단된 2 cm 이상의 관상피내암종 저평가 수술 전 예측에 역동적 유방 자기공명 영상 및 확산강조영상의 역할을 규명하고자 한다. 대상과 방법: 14 gauge침을 이용한 초음파 유도 하 중심부 침생검을 통해 관상피내암종으로 진단된 22명의 환자를 대상으로 하였다. 환자는 조직병리 결과에 의거하여 관상피내암종 저평가 유무에 따라 두 군으로 나뉘었다. 모든 환자에서 역동적 유방 자기공명 영상 및 확산강조영상을 포함한 3 테슬라 유방 자기공명 영상을 획득하였다. 생검으로 확인된 악성 종괴에 대해, 병변의 형태 (종괴 혹은 비종괴), 조영 증강 형태, 조영 증강 최고점, 및 현성 확산 계수를 CADstream 소프트웨어를 이용하여 획득 하였으며, Fisher's exact test및 Mann Whitney test 이용하여 이 항목을 비교, 분석하였다. 결과: 총 22명의 환자 중 8명의 환자가 저평가 군으로 분류되었다. 병변의 형태 및 조영증강 형태는 두 군의 통계학적 차이가 없었다 (P values = 1.000 및 0.613). 조영 증강 최고점의 중앙값은 저평가 군에서 159.5% 로 저평가 되지 않은 군의 133.5% 보다 높았으나 통계학적 유의한 차이를 보이지 않았다 (P value = 0.413). 저평가 군의 현성 확산 계수는 $1.26{\times}10^{-3}mm^2/sec$로 저평가 되지 않은 군의 $1.35{\times}10^{-3}mm^2/sec$ 보다 낮았다 (P value = 0.094). 결론: 현성 확산 계수는 초음파 유도한 중심부 침생검에 의한 관상피내암종 저평가 수술 전 예측에 도움이 될 가능성 있으며 추후 전향적 연구를 통해 이 연구 결과를 확인하는 것이 필요하겠다.

Keywords

References

  1. Schueller G, Jaromi S, Ponhold L, et al. US-guided 14-gauge core-needle breast biopsy: results of a validation study in 1352 cases. Radiology 2008;248:406 https://doi.org/10.1148/radiol.2482071994
  2. Liberman L. Clinical management issues in percutaneous core breast biopsy. Radiol Clin North Am 2000;38:791-807 https://doi.org/10.1016/S0033-8389(05)70201-3
  3. Youk JH, Kim EK, Kwak JY, Son EJ, Park BW, Kim SI. Benign papilloma without atypia diagnosed at US-guided 14-gauge core-needle biopsy: clinical and US features predictive of upgrade to malignancy. Radiology 2011;258:81-88 https://doi.org/10.1148/radiol.10100728
  4. O'Flynn EA, Wilson AR, Michell MJ. Image-guided breast biopsy: state-of-the-art. Clin Radiol 2010;65:259-270 https://doi.org/10.1016/j.crad.2010.01.008
  5. Helbich TH, Matzek W, Fuchsjager MH. Stereotactic and ultrasound-guided breast biopsy. Eur Radiol 2004;14:383-393 https://doi.org/10.1007/s00330-003-2141-z
  6. Sauer G, Deissler H, Strunz K, et al. Ultrasound-guided largecore needle biopsies of breast lesions: analysis of 962 cases to determine the number of samples for reliable tumour classification. Br J Cancer 2004;92:231-235
  7. Schoonjans JM, Brem RF. Fourteen-gauge ultrasonographically guided large-core needle biopsy of breast masses. J Ultrasound Med 2001;20:967-972 https://doi.org/10.7863/jum.2001.20.9.967
  8. Smith DN, Rosenfield Darling ML, Meyer JE, et al. The utility of ultrasonographically guided large-core needle biopsy: results from 500 consecutive breast biopsies. J Ultrasound Med 2001;20:43-49 https://doi.org/10.7863/jum.2001.20.1.43
  9. Suh Y, Kim M, Kim E, et al. Comparison of the underestimation rate in cases with ductal carcinoma in situ at ultrasound-guided core biopsy: 14-gauge automated core-needle biopsy vs 8-or 11- gauge vacuum-assisted biopsy. Br J Radiol 2012;85:e349-e356 https://doi.org/10.1259/bjr/30974918
  10. Verkooijen HM, Peeters PH, Buskens E, et al. Diagnostic accuracy of large-core needle biopsy for nonpalpable breast disease: a meta-analysis. Br J Cancer 2000;82:1017-1021 https://doi.org/10.1054/bjoc.1999.1036
  11. Bhooshan N, Giger ML, Jansen SA, Li H, Lan L, Newstead GM. Cancerous breast lesions on dynamic contrast-enhanced MR images: computerized characterization for image-based prognostic markers. Radiology 2010;254:680-690 https://doi.org/10.1148/radiol.09090838
  12. Edge SB, Byrd DR, Compton CC, Fritz AG, Greene FL, Trotti A. AJCC Cancer Staging Manual. 7th ed. Chicago, IL: Springer,2009.
  13. Kuhl CK, Schild HH. Dynamic image interpretation of MRI of the breast. J Magn Reson Imaging 2000;12:965-974 https://doi.org/10.1002/1522-2586(200012)12:6<965::AID-JMRI23>3.0.CO;2-1
  14. Van Goethem M, Schelfout K, Kersschot E, et al. Comparison of MRI features of different grades of DCIS and invasive carcinoma of the breast. JBR BTR 2005;88:225-232
  15. Chen W, Giger ML, Li H, Bick U, Newstead GM. Volumetric texture analysis of breast lesions on contrast-enhanced magnetic resonance images. Magn Reson Med 2007;58:562-571 https://doi.org/10.1002/mrm.21347
  16. Peters NH, Vincken KL, van den Bosch MA, Luijten PR, Mali WP, Bartels LW. Quantitative diffusion weighted imaging for differentiation of benign and malignant breast lesions: the influence of the choice of b-values. J Magn Reson Imaging 2010;31:1100-1105 https://doi.org/10.1002/jmri.22152
  17. Rubesova E, Grell AS, De Maertelaer V, Metens T, Chao SL, Lemort M. Quantitative diffusion imaging in breast cancer: a clinical prospective study. J Magn Reson Imaging 2006;24:319-324 https://doi.org/10.1002/jmri.20643
  18. Woodhams R, Matsunaga K, Kan S, et al. ADC mapping of benign and malignant breast tumors. Magn Reson Med Sci 2005;4:35-42 https://doi.org/10.2463/mrms.4.35
  19. Iima M, Le Bihan D, Okumura R, et al. Apparent diffusion coefficient as an MR imaging biomarker of low-risk ductal carcinoma in situ: a pilot study. Radiology 2011;260:364-372 https://doi.org/10.1148/radiol.11101892
  20. Rahbar H, Partridge SC, Eby PR, et al. Characterization of ductal carcinoma in situ on diffusion-weighted breast MRI. Eur Radiol 2011;21:2011-2019 https://doi.org/10.1007/s00330-011-2140-4
  21. Partridge SC, Demartini WB, Kurland BF, Eby PR, White SW, Lehman CD. Differential diagnosis of mammographically and clinically occult breast lesions on diffusion-weighted MRI. J Magn Reson Imaging 2010;31:562-570 https://doi.org/10.1002/jmri.22078
  22. Moon M, Cornfeld D, Weinreb J. Dynamic contrast-enhanced breast MR imaging. Magn Reson Imaging Clin N Am 2009;17:351-362 https://doi.org/10.1016/j.mric.2009.01.010
  23. Cho N, Moon WK, Chang JM, et al. Sonoelastographic lesion stiffness: preoperative predictor of the presence of an invasive focus in nonpalpable DCIS diagnosed at US-guided needle biopsy. Eur Radiol 2011;21:1618-1627 https://doi.org/10.1007/s00330-011-2103-9
  24. Lyman GH, Giuliano AE, Somerfield MR, et al. American Society of Clinical Oncology guideline recommendations for sentinel lymph node biopsy in early-stage breast cancer. J Clin Oncol 2005;23:7703-7720 https://doi.org/10.1200/JCO.2005.08.001
  25. Society AC. Breast cancer survival rates by stage. 2012
  26. Gutierrez RL, DeMartini WB, Silbergeld JJ, et al. High cancer yield and positive predictive value: outcomes at a center routinely using preoperative breast MRI for staging. AJR Am J Roentgenol 2011;196:W93-W99 https://doi.org/10.2214/AJR.10.4804
  27. Houssami N, Ciatto S, Macaskill P, et al. Accuracy and surgical impact of magnetic resonance imaging in breast cancer staging: systematic review and meta-analysis in detection of multifocal and multicentric cancer. J Clin Oncol 2008;26:3248-3258 https://doi.org/10.1200/JCO.2007.15.2108
  28. Pengel KE, Loo CE, Teertstra HJ, et al. The impact of preoperative MRI on breast-conserving surgery of invasive cancer: a comparative cohort study. Breast Cancer Res Treat 2009;116:161-169 https://doi.org/10.1007/s10549-008-0182-3
  29. Rosen EL, Smith-Foley SA, DeMartini WB, Eby PR, Peacock S, Lehman CD. BI-RADS MRI Enhancement characteristics of ductal carcinoma in situ. Breast J 2007;13:545-550 https://doi.org/10.1111/j.1524-4741.2007.00513.x
  30. Jansen SA. Ductal carcinoma in situ: detection, diagnosis, and characterization with magnetic resonance imaging. Semin Ultrasound CT MR 2011;32:306-318 https://doi.org/10.1053/j.sult.2011.02.007
  31. Sakamoto N, Tozaki M, Higa K, et al. Categorization of nonmass- like breast lesions detected by MRI. Breast Cancer 2008;15:241-246 https://doi.org/10.1007/s12282-007-0028-6
  32. Lehman CD, Peacock S, DeMartini WB, Chen X. A new automated software system to evaluate breast MR examinations: improved specificity without decreased sensitivity. AJR Am J Roentgenol 2006;187:51-56 https://doi.org/10.2214/AJR.05.0269
  33. Meeuwis C, Van de Ven SM, Stapper G, et al. Computer-aided detection (CAD) for breast MRI: evaluation of efficacy at 3.0 T. Eur Radiol 2010;20:522-528 https://doi.org/10.1007/s00330-009-1573-5
  34. Wang LC, DeMartini WB, Partridge SC, Peacock S, Lehman CD. MRI-detected suspicious breast lesions: predictive values of kinetic features measured by computer-aided evaluation. AJR Am J Roentgenol 2009;193:826-831 https://doi.org/10.2214/AJR.08.1335
  35. Jansen SA, Newstead GM, Abe H, Shimauchi A, Schmidt RA, Karczmar GS. Pure ductal carcinoma in situ: kinetic and morphologic MR characteristics compared with mammographic appearance and nuclear grade. Radiology 2007;245:684-691 https://doi.org/10.1148/radiol.2453062061
  36. Newell D, Nie K, Chen JH, et al. Selection of diagnostic features on breast MRI to differentiate between malignant and benign lesions using computer-aided diagnosis: differences in lesions presenting as mass and non-mass-like enhancement. Eur Radiol 2010;20:771-781 https://doi.org/10.1007/s00330-009-1616-y
  37. Woodhams R, Ramadan S, Stanwell P, et al. Diffusion-weighted imaging of the breast: principles and clinical applications. Radiographics 2011;31:1059-1084 https://doi.org/10.1148/rg.314105160
  38. Kuroki-Suzuki S, Kuroki Y, Nasu K, Nawano S, Moriyma N, Okazaki M. Detecting breast cancer with non-contrast MR imaging: combining diffusion-weighted and STIR imaging. Magn Reson Med Sci 2007;6:21-27 https://doi.org/10.2463/mrms.6.21
  39. Marini C, Iacconi C, Giannelli M, Cilotti A, Moretti M, Bartolozzi C. Quantitative diffusion-weighted MR imaging in the differential diagnosis of breast lesion. Eur Radiol 2007;17:2646-2655 https://doi.org/10.1007/s00330-007-0621-2
  40. Kuhl CK, Schrading S, Bieling HB, et al. MRI for diagnosis of pure ductal carcinoma in situ: a prospective observational study. Lancet 2007;370:485-492 https://doi.org/10.1016/S0140-6736(07)61232-X
  41. Liberman L, Morris EA, Dershaw DD, Abramson AF, Tan LK. MR imaging of the ipsilateral breast in women with percutaneously proven breast cancer. AJR Am J Roentgenol 2003;180:901-910 https://doi.org/10.2214/ajr.180.4.1800901

Cited by

  1. Histogram analysis of volume-based apparent diffusion coefficient in breast cancer vol.58, pp.11, 2013, https://doi.org/10.1177/0284185117694507