DOI QR코드

DOI QR Code

Dynamic Characteristics of Multiple Bars in the Channels with Erodible Banks

하안침식을 고려한 복렬사주의 동적 거동 특성 분석

  • Jang, Chang-Lae (Dept. of Civil Engineering, Korea National University of Transportation)
  • 장창래 (한국교통대학교 토목공학과)
  • Received : 2012.07.06
  • Accepted : 2012.09.17
  • Published : 2013.01.31

Abstract

In this study, the development processes of multiple bars in the channels with erodible banks were investigated by double Fourier analysis. The initially straight channels in the experiment flume were widened with eroding the side banks, and the multiple bars were generated and grew due to stalling of the sediment on the bed. The bars migrated downstream and the size of the bars increased with time. The flow was separated around the bars, and the bed and banks near the bars were scoured due to the impinged secondary flow. The morphologic changes were accelerated by the bank erosion, which affected the fluctuations of sediment discharge downstream. The double Fourier analysis of the bed waves showed that 1-1 mode (alternate bar) was dominant at the initial stage of the channel development. As time increased, 2-3 mode (central or multiple bars) was dominant due to the increased width to depth ratio. Moreover, the number of bars in a cross section of the channel were increased due to the non linearity of alternate bars. The width to depth ratio was increased by the bank erosion, which affected the bar migration and the bar wavelength. However, the dimensionless tractive force was decreased by it.

본 연구에서는 복렬사주의 모드를 객관적으로 판단할 수 있는 2중 퓨리에 해석을 수행하여 하폭의 변화에 따른 복렬사주의 발달 과정을 정량적으로 분석하였다. 초기에 직선하도에서 하안침식이 발생하고, 하폭 대 수심의 비가 증가하면서 복렬사주가 발달하였다. 사주가 하류로 이동하면서 성장하고, 사주의 주변에서 흐름이 분리되어 하안 침식을 가속시키면서, 지형이 지속적으로 변하여 유사의 유출특성에 영향을 주었다. 2중 Fourier 해석에 의한 하상파(wave)의 분포와 지배적인 성분의 변화를 분석한 결과, 초기에1-1 모드(mode)인 교호사주가 지배적이지만, 시간이 지나면서 하폭이 증가하여 상대적으로 수심이 감소하면서 2-3 모드가 지배적인 것으로 나타났으며, 교호사주의 강한 비선형 특성이 상호작용하기 때문이다. 하안침식이 진행되면서 하폭 대 수심의 비가 증가하고, 무차원 소류력이 감소하였다. 하폭 대 수심의 비가 증가할수록 사주의 이동속도가 감소하고, 사주의 파장은 증가하였다. 무차원 소류력이 증가하면서, 사주의 이동속도는 증가하였다.

Keywords

References

  1. Abad, J.D., and Garcia, M.H. (2006). "RVR Meander: A toolbox for remeandering of channelized streams." Comput. Geosci., Vol. 32, pp. 92-101. https://doi.org/10.1016/j.cageo.2005.05.006
  2. Ashmore, P.E. (1991). "How do gravel-bed rivers braid?." Can. J. Earh Sci., Vol. 28, pp. 326-341. https://doi.org/10.1139/e91-030
  3. Bertoldi, W., Tubino, M., and Zolezzi, G. (2002). Experimental observations of river bifurcations with uniform and graded sediments" in River Flow 2002, edit by D. Bousmar and Y. Zech, Balkema, Lisse, Netherlands, pp. 751-759.
  4. Callander, R.A. (1969). "Instability and river channels." J. Fluid Mech., Vol. 36, No. 3, pp. 456-480.
  5. Colombini, M., Seminara, G., and Tubino, M. (1987). "Finite amplitude alternate bars." J. Fluid Mech., Vol. 181, pp. 213-232. https://doi.org/10.1017/S0022112087002064
  6. Crosato, A., and Mosselman, E. (2009). "Simple physicsbased predictor for the number of river bars and the transition between meandering and braiding." Water Resour. Res., Vol. 45, W03424. doi: 1029/2008WR007242. https://doi.org/10.1029/2008WR007242
  7. Federici, B., and Paola, C. (2003)."Dynamics of channel bifurcations in noncohesive sediments." Water Resour. Res., Vol. 39, No. 6, 1162. doi: 10.1029/2002 WR001434.
  8. Fredsoe, J. (1978). "Meandering and braiding of rivers." J. Fluid Mech., Vol. 84, No. 4, pp. 609-624. https://doi.org/10.1017/S0022112078000373
  9. Fujita, Y. (1989). Bar and channel formation in braided stream. River meandering, Water Res. Monogr., Vol. 12, edited by S. Ikeda and G. Parker, AGU, Washington, D.C., pp. 417-462.
  10. Hasegawa, K. (1984). Hydraulic research on planimetric forms, bed topographies and flow in alluvial rivers., PhD Dissertation, Hokkaido University, Japan (in Japanese).
  11. Jang, C.-L. (2003). Study on the morphological behavior of the channel with erodible banks, Ph.D. dissertation, Hokkaido University, Japan.
  12. Jang, C.-L., and Shimizu, Y. (2005). "Numerical simulation of the behavior of alternate bars with different bank strengths." Journal of Hydraulic Research., IAHR, Vol. 43, No. 6, pp. 595-611. https://doi.org/10.1080/00221680509500379
  13. Kuroki, M., and Kishi, T. (1984)."Regime criteria on bars and braids in alluvial straight channels." Proc. JSCE, 342, pp. 87-96.
  14. Mosely, M.P. (1976). "An experimental study of channel confluences" J. Geol., 84, pp. 535-562. https://doi.org/10.1086/628230
  15. Park, B.J., Shin, J.I., and Jung, K.S. (2005). "The evaluation of river naturalness of biological habitat restoration: I. Proposal of evaluation method." Journal of Korea Water Resources Association, KWRA, Vol. 38, No. 1, pp. 37-48 (in Korean). https://doi.org/10.3741/JKWRA.2005.38.1.037
  16. Parker, G. (1976). "On the cause and characteristic scales of meandering and braiding in rivers." J. Fluid Mech., Vol. 76, No. 3, pp. 457-479. https://doi.org/10.1017/S0022112076000748
  17. Repetto, M., and Tubino, M. (1999) "Transition from migration alternate bars to steady central bars in channels with variable width" International Symposium on River, Coastal and Esturine Morphodynamics. Genova, Italy, September 6-10.
  18. Repetto, M., Tubino, M., and Paola, C. (2002). "Planimetric instability of channels with variable width." J. Fluid Mech., 457, pp. 79-109.
  19. Seminara, G., and Tubino, M. (1989). Alternate bar and meandering: Free, forced and mixed interactions, in River Meandering, Water Res. Monogr., Vol. 12, edited by S. Ikeda and G. Parker, AGU, Washington, D.C., pp. 267-320.

Cited by

  1. Experimental Analysis of the Morphological Changes of the Vegetated Channels vol.46, pp.9, 2013, https://doi.org/10.3741/JKWRA.2013.46.9.909
  2. Numerical Experiments of the Behavior of Bars in the Channels with Periodic Variable Width vol.47, pp.1, 2014, https://doi.org/10.3741/JKWRA.2014.47.1.37