References
- Thakor, A. S.; Jokerst, J.; Zavaleta, C.; Massoud, T. F.; Gambhir, S. S. Nano Lett. 2011, 11, 4029. https://doi.org/10.1021/nl202559p
- Ungureanu, C.; Amelink, A.; Rayavarapu, R. G.; Sterenborg, H. J. C. M.; Manohar, S.; Van Leeuwen, T. G. ACS Nano 2010, 4, 4081. https://doi.org/10.1021/nn1009165
- Chen, S. Y.; Mock, J. J.; Hill, R. T.; Chilkoti, A.; Smith, D. R.; Lazarides, A. A. ACS Nano 2010, 4, 6535. https://doi.org/10.1021/nn101644s
- Qian, W.; Murakami, M.; Ichikawa, Y.; Che, Y. J. Phys. Chem. C 2011, 115, 23293. https://doi.org/10.1021/jp2079567
- Park, S.; Yang, P.; Corredor, P.; Weaver, M. J. J. Am. Chem. Soc. 2002, 124, 2428. https://doi.org/10.1021/ja017406b
- Itoh, H.; Naka, K.; Chujo, Y. J. Am. Chem. Soc. 2004, 126, 3026. https://doi.org/10.1021/ja039895g
- Jia, H. Y.; Liu, Y.; Zhang, X. J.; Han, L.; Du, L. B.; Tian, Q.; Xu, Y. C. J. Am. Chem. Soc. 2009, 131, 40. https://doi.org/10.1021/ja808033w
- Brust, M.; Gordillo, G. J. J. Am. Chem. Soc. 2012, 134, 3318. https://doi.org/10.1021/ja2096514
- Toster, J.; Iyer, K. S.; Burtovyy, R.; Burgess, S. S. O.; Luzinov, I. A.; Raston, C. L. J. Am. Chem. Soc. 2009, 131, 8356. https://doi.org/10.1021/ja901806y
- Kang, B.; Mackey, M. A.; El-Sayed, M. A. J. Am. Chem. Soc. 2010, 132, 1517. https://doi.org/10.1021/ja9102698
- Odom, T. W.; Nehl, C. L. ACS Nano 2008, 2, 612. https://doi.org/10.1021/nn800178z
- Daniel, M. C.; Astruc, D. Chem. Rev. 2004, 104, 293. https://doi.org/10.1021/cr030698+
- Ghosh, S. K.; Pal, T. Chem. Rev. 2007, 107, 4497.
- Myroshnychenko, V.; Fernandez, J. R.; Santos, I. P.; Funston, A. M.; Novo, C.; Mulvaney, P.; Liz-Marzan, L. M.; Abajo, F. J. G. D. Chem. Soc. Rev. 2008, 37, 1792. https://doi.org/10.1039/b711486a
- Willets, K. A.; Van Duyne, R. P. Annu. Rev. Phys. Chem. 2007, 58, 267. https://doi.org/10.1146/annurev.physchem.58.032806.104607
- Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C. J. Phys. Chem. B 2003, 107, 668.
- Li, M.; Cushing, S. K.; Wang, Q.; Shi, X.; Hornak, L. A.; Hong, Z.; Wu, N. J. Phys. Chem. Lett. 2011, 2, 2125. https://doi.org/10.1021/jz201002g
- Singh, M. P.; Strouse, G. F. J. Am. Chem. Soc. 2010, 132, 9383. https://doi.org/10.1021/ja1022128
- Pendry, J. Science 2002, 285, 1687.
- Liu, J.; Lu, Y. J. Am. Chem. Soc. 2004, 126, 12298. https://doi.org/10.1021/ja046628h
- Saha, K.; Agasti, S. S.; Kim, C.; Li, X.; Rotello, V. M. Chem. Rev. 2012, 112, 2739. https://doi.org/10.1021/cr2001178
- Kumar, S. S.; Kwak, K.; Lee, D. Anal. Chem. 2011, 83, 3244. https://doi.org/10.1021/ac200384w
- Castillejos, E.; Suarez, E. G.; Baeza, B. B.; Bacsa, R.; Serp, P.; Ruiz, A. G.; Ramos, I. R. Catal. Commun. 2012, 22, 79. https://doi.org/10.1016/j.catcom.2012.02.016
- Trammell, S. A.; Nita, R.; Moore, M.; Zabetakis, D.; Chang, E.; Knight, D. A. Chem. Commun. 2012, 48, 4121. https://doi.org/10.1039/c2cc30850a
- Xiao, F. J. Mater. Chem. 2012, 22, 7819. https://doi.org/10.1039/c2jm16452c
- Tao, C.; An, Q.; Zhu, W.; Yang, H.; Li, W.; Lin, C.; Xu, D.; Li, G. Chem. Commun. 2011, 47, 9867. https://doi.org/10.1039/c1cc12474a
- Feng, Y.; Wang, Y.; Wang, H.; Chen, T.; Tay, Y. Y.; Yao, L.; Yan, Q.; Li, S.; Chen, H. Small 2012, 8, 246. https://doi.org/10.1002/smll.201102215
- Graham, D. Angew. Chem. Int. Ed. 2010, 49, 9325. https://doi.org/10.1002/anie.201002838
- Park, W. H.; Kim, Z. H. Nano Lett. 2010, 10, 4040. https://doi.org/10.1021/nl102026p
- Yang, M.; Puebla, R. A.; Kim, H. S.; Potel, P. A.; Liz-Marzan, L. M.; Kotov, N. A. Nano Lett. 2010, 10, 4013. https://doi.org/10.1021/nl101946c
- Hossain, M. K.; Shimada, T.; Kitajima, M.; Imura, K.; Okamoto, H. Langmuir 2008, 24, 9241. https://doi.org/10.1021/la8001543
- Zhang, X.; Sun, B.; Friend, R. H.; Guo, H.; Nau, D.; Giessen, H. Nano Lett. 2006, 6, 651. https://doi.org/10.1021/nl052361o
- Chandrasekharan, N.; Kamat, P. V. Nano Lett. 2001, 1, 67. https://doi.org/10.1021/nl000184f
- Girard, C.; Dujardin, E.; Li, M.; Mann, S. Phys. Rev. Lett. 2006, 97, 100801. https://doi.org/10.1103/PhysRevLett.97.100801
- Waele, R. D.; Koenderink, A. F.; Polman, A. Nano Lett. 2007, 7, 2004. https://doi.org/10.1021/nl070807q
- Harris, N.; Arnold, M. D.; Blaber, M. G.; Ford, M. J. J. Phys. Chem. C 2009, 113, 2784. https://doi.org/10.1021/jp8083869
- Bernard, L.; Kamdzhilov, Y.; Calame, M.; Molen, S. J. V. D.; Liao, J.; Schonenberger, C. J. Phys. Chem. C 2007, 111, 18445. https://doi.org/10.1021/jp077095c
- Aslan, K.; Luhrs, C. C.; Perez-Luna, V. H. J. Phys. Chem. B 2004, 108, 15631. https://doi.org/10.1021/jp036089n
- Storhoff, J. J.; Lazarides, A. A.; Mucic, R. C; Mirkin, C. A.; Letsinger, R. L.; Schatz, G. C. J. Am. Chem. Soc. 2000, 122, 4640. https://doi.org/10.1021/ja993825l
- Si, S.; Mandal, T. K. Langmuir 2007, 23, 190. https://doi.org/10.1021/la061505r
- Li, D.; He, Q.; Cui, Y.; Li, J. Chem. Mater. 2007, 19, 412. https://doi.org/10.1021/cm062290+
- Zhu, M. Q.; Wang, L. Q.; Exarhos, G. J.; Li, A. D. Q. J. Am. Chem. Soc. 2004, 126, 2656. https://doi.org/10.1021/ja038544z
- Nengsih, S.; Umar, A. A.; Salleh, M. M.; Yahaya, M. Key Eng. Mater. 2012, 495, 79.
- Le Botlan, D. J.; Mechin, B. G.; Martin, G. J. Anal. Chem. 1983, 55, 587. https://doi.org/10.1021/ac00254a041
- Raja, D. S.; Sultana, B. J. Environ. Health 2012, 74, 36.
- Mandin, C.; Dor, F.; Boulanger, G.; Cabanes, P. A.; Solal, C. Environ. Risque Sante 2012, 11, 27.
- Shin, H. S.; Lim, H. H. Int. J. Food Sci. Technol. 2012, 47, 350. https://doi.org/10.1111/j.1365-2621.2011.02845.x
- Kumari, A.; Lim,Y. X.; Newell, A. H.; Olson, S. B.; McCullough, A. K. DNA Repair 2012, 11, 236. https://doi.org/10.1016/j.dnarep.2011.11.001
- Nengsih, S.; Umar, A. A.; Salleh, M. M.; Oyama, M. Sensors 2012, 12, 10309. https://doi.org/10.3390/s120810309
- Lebrun, N.; Dhamelincourt, P.; Focsa, C.; Chazallon, B.; Destombes, J. L.; Prevost, D. J. Raman Spectrosc. 2003, 34, 459. https://doi.org/10.1002/jrs.1025
- Mohlmann, G. R. J. Raman Spectrosc. 1987, 18, 199. https://doi.org/10.1002/jrs.1250180310
- Mafune, F.; Kohno, J. Y.; Takeda, Y.; Kondow, T. J. Phys. Chem. B 2001, 105, 5114. https://doi.org/10.1021/jp0037091
- Nichols, W. T.; Sasaki, T.; Koshizaki, N. J. Appl. Phys. 2006, 100, 114913. https://doi.org/10.1063/1.2390642
- Quinten, M.; Kreibig, U. Surface Sci. 1986, 172, 557. https://doi.org/10.1016/0039-6028(86)90501-7
- Link, S.; El-Sayed, M. A. J. Phys. Chem. B 1999, 103, 8410. https://doi.org/10.1021/jp9917648
- Mulvaney, P. Langmuir 1996, 12, 788. https://doi.org/10.1021/la9502711
- Duy, J.; Connell, L. B.; Eck, W.; Collins, S. D.; Smith, R. L. J. Nanopart. Res. 2010, 12, 2363. https://doi.org/10.1007/s11051-010-9996-0
- Aslan, K.; Perez-Luna, V. H. Langmuir 2002, 18, 6059. https://doi.org/10.1021/la025795x
- Eck, D.; Helm, C. A.; Wagner, N. J.; Vaynberg, K. A. Langmuir, 2001, 17, 957. https://doi.org/10.1021/la001142+
- Bohren, C. F.; Huffman, D. R. Absorption and Scattering of Light by Small Particles; Wiley: New York, 1983.
- Mie, G. Ann. Phys. (Leipzig) 1908, 25, 377.
- Kreibig, U.; Vollmer, M.; Toennies, J. P. Optical Properties of Metal Clusters; Springer-Verlag: Berlin, 1995.
- Perenboom, J. A. A. J.; Wyder, P.; Meier, F. Phys. Rep. 1981, 78, 173. https://doi.org/10.1016/0370-1573(81)90194-0
- Taylor, R. W.; Lee, T. C.; Scherman, O. A.; Esteban, R.; Aizpurua, J.; Huang, F. M.; Baumberg, J. J.; Mahajan, S. ACS Nano 2011, 5, 3878. https://doi.org/10.1021/nn200250v
- Link, S.; El-Sayed, M. A. J. Phys. Chem. B 1999, 103, 4212. https://doi.org/10.1021/jp984796o
- Sharma, D. Colloids Surf., B 2011, 85, 330. https://doi.org/10.1016/j.colsurfb.2011.03.005
- Muto, H.; Yamada, K.; Miyajima, K.; Mafune, F. J. Phys. Chem. C 2007, 111, 17221. https://doi.org/10.1021/jp075582m
- Amendola, V.; Polizzi, S.; Meneghetti, M. Langmuir 2007, 23, 6766. https://doi.org/10.1021/la0637061
- Amendola, V.; Meneghetti, M. J. Mater. Chem. 2007, 17, 4705. https://doi.org/10.1039/b709621f
- Amendola, V.; Polizzi, S.; Meneghetti, M. J. Phys. Chem. B 2006, 110, 7232.
- Sylvestre, J. P.; Poulin, S.; Kabashin, A. V.; Sacher, E.; Meunier, M.; Luong, J. H. T. J. Phys. Chem. B 2004, 108, 16864. https://doi.org/10.1021/jp047134+
Cited by
- Charge-switchable gold nanoparticles for enhanced enzymatic thermostability vol.17, pp.33, 2015, https://doi.org/10.1039/C5CP03021H
- Particle Background Levels In Human Tissues—PABALIHT project. Part I: a nanometallomic study of metal-based micro- and nanoparticles in liver and kidney in an Italian population group vol.21, pp.3, 2019, https://doi.org/10.1007/s11051-019-4480-y