DOI QR코드

DOI QR Code

Aggregation of Laser-Generated Gold Nanoparticles Mediated by Formalin

  • Alauddin, Md. (Department of Chemistry and Research Center for New Nano Bio Fusion Technology, Kyung Hee University) ;
  • Kim, Kuk Ki (Department of Chemistry and Research Center for New Nano Bio Fusion Technology, Kyung Hee University) ;
  • Roy, Madhusudan (Department of Chemistry and Research Center for New Nano Bio Fusion Technology, Kyung Hee University) ;
  • Song, Jae Kyu (Department of Chemistry and Research Center for New Nano Bio Fusion Technology, Kyung Hee University) ;
  • Kim, Myung Soo (Department of Chemistry, Seoul National University) ;
  • Park, Seung Min (Department of Chemistry and Research Center for New Nano Bio Fusion Technology, Kyung Hee University)
  • Received : 2012.10.10
  • Accepted : 2012.10.28
  • Published : 2013.01.20

Abstract

We have investigated the effects of formalin on the assembly of colloidal gold nanoparticles (AuNPs) prepared by laser ablation of a solid gold target in deionized water. Upon addition of formalin, the surface plasmon resonance (SPR) band at 519 nm for pure AuNPs decreases and shifts to red while a new broad SPR band appears at ~700 nm. The red-shift is prominent with increase in the incubation time. The average size of the initial AuNPs is around 12 nm but it increases to 23 nm after addition of formalin. It turns out that formalin acts as a cationic surfactant for AuNPs with negative surface charge in the colloidal solutions. Furthermore, through analysis of the Raman spectrum of formalin and the density functional theory calculations, we confirm that methanediol is the main species in formalin which is in charge of the aggregation of AuNPs.

Keywords

References

  1. Thakor, A. S.; Jokerst, J.; Zavaleta, C.; Massoud, T. F.; Gambhir, S. S. Nano Lett. 2011, 11, 4029. https://doi.org/10.1021/nl202559p
  2. Ungureanu, C.; Amelink, A.; Rayavarapu, R. G.; Sterenborg, H. J. C. M.; Manohar, S.; Van Leeuwen, T. G. ACS Nano 2010, 4, 4081. https://doi.org/10.1021/nn1009165
  3. Chen, S. Y.; Mock, J. J.; Hill, R. T.; Chilkoti, A.; Smith, D. R.; Lazarides, A. A. ACS Nano 2010, 4, 6535. https://doi.org/10.1021/nn101644s
  4. Qian, W.; Murakami, M.; Ichikawa, Y.; Che, Y. J. Phys. Chem. C 2011, 115, 23293. https://doi.org/10.1021/jp2079567
  5. Park, S.; Yang, P.; Corredor, P.; Weaver, M. J. J. Am. Chem. Soc. 2002, 124, 2428. https://doi.org/10.1021/ja017406b
  6. Itoh, H.; Naka, K.; Chujo, Y. J. Am. Chem. Soc. 2004, 126, 3026. https://doi.org/10.1021/ja039895g
  7. Jia, H. Y.; Liu, Y.; Zhang, X. J.; Han, L.; Du, L. B.; Tian, Q.; Xu, Y. C. J. Am. Chem. Soc. 2009, 131, 40. https://doi.org/10.1021/ja808033w
  8. Brust, M.; Gordillo, G. J. J. Am. Chem. Soc. 2012, 134, 3318. https://doi.org/10.1021/ja2096514
  9. Toster, J.; Iyer, K. S.; Burtovyy, R.; Burgess, S. S. O.; Luzinov, I. A.; Raston, C. L. J. Am. Chem. Soc. 2009, 131, 8356. https://doi.org/10.1021/ja901806y
  10. Kang, B.; Mackey, M. A.; El-Sayed, M. A. J. Am. Chem. Soc. 2010, 132, 1517. https://doi.org/10.1021/ja9102698
  11. Odom, T. W.; Nehl, C. L. ACS Nano 2008, 2, 612. https://doi.org/10.1021/nn800178z
  12. Daniel, M. C.; Astruc, D. Chem. Rev. 2004, 104, 293. https://doi.org/10.1021/cr030698+
  13. Ghosh, S. K.; Pal, T. Chem. Rev. 2007, 107, 4497.
  14. Myroshnychenko, V.; Fernandez, J. R.; Santos, I. P.; Funston, A. M.; Novo, C.; Mulvaney, P.; Liz-Marzan, L. M.; Abajo, F. J. G. D. Chem. Soc. Rev. 2008, 37, 1792. https://doi.org/10.1039/b711486a
  15. Willets, K. A.; Van Duyne, R. P. Annu. Rev. Phys. Chem. 2007, 58, 267. https://doi.org/10.1146/annurev.physchem.58.032806.104607
  16. Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C. J. Phys. Chem. B 2003, 107, 668.
  17. Li, M.; Cushing, S. K.; Wang, Q.; Shi, X.; Hornak, L. A.; Hong, Z.; Wu, N. J. Phys. Chem. Lett. 2011, 2, 2125. https://doi.org/10.1021/jz201002g
  18. Singh, M. P.; Strouse, G. F. J. Am. Chem. Soc. 2010, 132, 9383. https://doi.org/10.1021/ja1022128
  19. Pendry, J. Science 2002, 285, 1687.
  20. Liu, J.; Lu, Y. J. Am. Chem. Soc. 2004, 126, 12298. https://doi.org/10.1021/ja046628h
  21. Saha, K.; Agasti, S. S.; Kim, C.; Li, X.; Rotello, V. M. Chem. Rev. 2012, 112, 2739. https://doi.org/10.1021/cr2001178
  22. Kumar, S. S.; Kwak, K.; Lee, D. Anal. Chem. 2011, 83, 3244. https://doi.org/10.1021/ac200384w
  23. Castillejos, E.; Suarez, E. G.; Baeza, B. B.; Bacsa, R.; Serp, P.; Ruiz, A. G.; Ramos, I. R. Catal. Commun. 2012, 22, 79. https://doi.org/10.1016/j.catcom.2012.02.016
  24. Trammell, S. A.; Nita, R.; Moore, M.; Zabetakis, D.; Chang, E.; Knight, D. A. Chem. Commun. 2012, 48, 4121. https://doi.org/10.1039/c2cc30850a
  25. Xiao, F. J. Mater. Chem. 2012, 22, 7819. https://doi.org/10.1039/c2jm16452c
  26. Tao, C.; An, Q.; Zhu, W.; Yang, H.; Li, W.; Lin, C.; Xu, D.; Li, G. Chem. Commun. 2011, 47, 9867. https://doi.org/10.1039/c1cc12474a
  27. Feng, Y.; Wang, Y.; Wang, H.; Chen, T.; Tay, Y. Y.; Yao, L.; Yan, Q.; Li, S.; Chen, H. Small 2012, 8, 246. https://doi.org/10.1002/smll.201102215
  28. Graham, D. Angew. Chem. Int. Ed. 2010, 49, 9325. https://doi.org/10.1002/anie.201002838
  29. Park, W. H.; Kim, Z. H. Nano Lett. 2010, 10, 4040. https://doi.org/10.1021/nl102026p
  30. Yang, M.; Puebla, R. A.; Kim, H. S.; Potel, P. A.; Liz-Marzan, L. M.; Kotov, N. A. Nano Lett. 2010, 10, 4013. https://doi.org/10.1021/nl101946c
  31. Hossain, M. K.; Shimada, T.; Kitajima, M.; Imura, K.; Okamoto, H. Langmuir 2008, 24, 9241. https://doi.org/10.1021/la8001543
  32. Zhang, X.; Sun, B.; Friend, R. H.; Guo, H.; Nau, D.; Giessen, H. Nano Lett. 2006, 6, 651. https://doi.org/10.1021/nl052361o
  33. Chandrasekharan, N.; Kamat, P. V. Nano Lett. 2001, 1, 67. https://doi.org/10.1021/nl000184f
  34. Girard, C.; Dujardin, E.; Li, M.; Mann, S. Phys. Rev. Lett. 2006, 97, 100801. https://doi.org/10.1103/PhysRevLett.97.100801
  35. Waele, R. D.; Koenderink, A. F.; Polman, A. Nano Lett. 2007, 7, 2004. https://doi.org/10.1021/nl070807q
  36. Harris, N.; Arnold, M. D.; Blaber, M. G.; Ford, M. J. J. Phys. Chem. C 2009, 113, 2784. https://doi.org/10.1021/jp8083869
  37. Bernard, L.; Kamdzhilov, Y.; Calame, M.; Molen, S. J. V. D.; Liao, J.; Schonenberger, C. J. Phys. Chem. C 2007, 111, 18445. https://doi.org/10.1021/jp077095c
  38. Aslan, K.; Luhrs, C. C.; Perez-Luna, V. H. J. Phys. Chem. B 2004, 108, 15631. https://doi.org/10.1021/jp036089n
  39. Storhoff, J. J.; Lazarides, A. A.; Mucic, R. C; Mirkin, C. A.; Letsinger, R. L.; Schatz, G. C. J. Am. Chem. Soc. 2000, 122, 4640. https://doi.org/10.1021/ja993825l
  40. Si, S.; Mandal, T. K. Langmuir 2007, 23, 190. https://doi.org/10.1021/la061505r
  41. Li, D.; He, Q.; Cui, Y.; Li, J. Chem. Mater. 2007, 19, 412. https://doi.org/10.1021/cm062290+
  42. Zhu, M. Q.; Wang, L. Q.; Exarhos, G. J.; Li, A. D. Q. J. Am. Chem. Soc. 2004, 126, 2656. https://doi.org/10.1021/ja038544z
  43. Nengsih, S.; Umar, A. A.; Salleh, M. M.; Yahaya, M. Key Eng. Mater. 2012, 495, 79.
  44. Le Botlan, D. J.; Mechin, B. G.; Martin, G. J. Anal. Chem. 1983, 55, 587. https://doi.org/10.1021/ac00254a041
  45. Raja, D. S.; Sultana, B. J. Environ. Health 2012, 74, 36.
  46. Mandin, C.; Dor, F.; Boulanger, G.; Cabanes, P. A.; Solal, C. Environ. Risque Sante 2012, 11, 27.
  47. Shin, H. S.; Lim, H. H. Int. J. Food Sci. Technol. 2012, 47, 350. https://doi.org/10.1111/j.1365-2621.2011.02845.x
  48. Kumari, A.; Lim,Y. X.; Newell, A. H.; Olson, S. B.; McCullough, A. K. DNA Repair 2012, 11, 236. https://doi.org/10.1016/j.dnarep.2011.11.001
  49. Nengsih, S.; Umar, A. A.; Salleh, M. M.; Oyama, M. Sensors 2012, 12, 10309. https://doi.org/10.3390/s120810309
  50. Lebrun, N.; Dhamelincourt, P.; Focsa, C.; Chazallon, B.; Destombes, J. L.; Prevost, D. J. Raman Spectrosc. 2003, 34, 459. https://doi.org/10.1002/jrs.1025
  51. Mohlmann, G. R. J. Raman Spectrosc. 1987, 18, 199. https://doi.org/10.1002/jrs.1250180310
  52. Mafune, F.; Kohno, J. Y.; Takeda, Y.; Kondow, T. J. Phys. Chem. B 2001, 105, 5114. https://doi.org/10.1021/jp0037091
  53. Nichols, W. T.; Sasaki, T.; Koshizaki, N. J. Appl. Phys. 2006, 100, 114913. https://doi.org/10.1063/1.2390642
  54. Quinten, M.; Kreibig, U. Surface Sci. 1986, 172, 557. https://doi.org/10.1016/0039-6028(86)90501-7
  55. Link, S.; El-Sayed, M. A. J. Phys. Chem. B 1999, 103, 8410. https://doi.org/10.1021/jp9917648
  56. Mulvaney, P. Langmuir 1996, 12, 788. https://doi.org/10.1021/la9502711
  57. Duy, J.; Connell, L. B.; Eck, W.; Collins, S. D.; Smith, R. L. J. Nanopart. Res. 2010, 12, 2363. https://doi.org/10.1007/s11051-010-9996-0
  58. Aslan, K.; Perez-Luna, V. H. Langmuir 2002, 18, 6059. https://doi.org/10.1021/la025795x
  59. Eck, D.; Helm, C. A.; Wagner, N. J.; Vaynberg, K. A. Langmuir, 2001, 17, 957. https://doi.org/10.1021/la001142+
  60. Bohren, C. F.; Huffman, D. R. Absorption and Scattering of Light by Small Particles; Wiley: New York, 1983.
  61. Mie, G. Ann. Phys. (Leipzig) 1908, 25, 377.
  62. Kreibig, U.; Vollmer, M.; Toennies, J. P. Optical Properties of Metal Clusters; Springer-Verlag: Berlin, 1995.
  63. Perenboom, J. A. A. J.; Wyder, P.; Meier, F. Phys. Rep. 1981, 78, 173. https://doi.org/10.1016/0370-1573(81)90194-0
  64. Taylor, R. W.; Lee, T. C.; Scherman, O. A.; Esteban, R.; Aizpurua, J.; Huang, F. M.; Baumberg, J. J.; Mahajan, S. ACS Nano 2011, 5, 3878. https://doi.org/10.1021/nn200250v
  65. Link, S.; El-Sayed, M. A. J. Phys. Chem. B 1999, 103, 4212. https://doi.org/10.1021/jp984796o
  66. Sharma, D. Colloids Surf., B 2011, 85, 330. https://doi.org/10.1016/j.colsurfb.2011.03.005
  67. Muto, H.; Yamada, K.; Miyajima, K.; Mafune, F. J. Phys. Chem. C 2007, 111, 17221. https://doi.org/10.1021/jp075582m
  68. Amendola, V.; Polizzi, S.; Meneghetti, M. Langmuir 2007, 23, 6766. https://doi.org/10.1021/la0637061
  69. Amendola, V.; Meneghetti, M. J. Mater. Chem. 2007, 17, 4705. https://doi.org/10.1039/b709621f
  70. Amendola, V.; Polizzi, S.; Meneghetti, M. J. Phys. Chem. B 2006, 110, 7232.
  71. Sylvestre, J. P.; Poulin, S.; Kabashin, A. V.; Sacher, E.; Meunier, M.; Luong, J. H. T. J. Phys. Chem. B 2004, 108, 16864. https://doi.org/10.1021/jp047134+

Cited by

  1. Charge-switchable gold nanoparticles for enhanced enzymatic thermostability vol.17, pp.33, 2015, https://doi.org/10.1039/C5CP03021H
  2. Particle Background Levels In Human Tissues—PABALIHT project. Part I: a nanometallomic study of metal-based micro- and nanoparticles in liver and kidney in an Italian population group vol.21, pp.3, 2019, https://doi.org/10.1007/s11051-019-4480-y