DOI QR코드

DOI QR Code

KPACK: Relativistic Two-component Ab Initio Electronic Structure Program Package

  • Kim, Inkoo (Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Lee, Yoon Sup (Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST))
  • Received : 2012.10.09
  • Accepted : 2012.10.28
  • Published : 2013.01.20

Abstract

We describe newly developed software named KPACK for relativistic electronic structure computation of molecules containing heavy elements that enables the two-component ab initio calculations in Kramers restricted and unrestricted formalisms in the framework of the relativistic effective core potential (RECP). The spin-orbit coupling as relativistic effect enters into the calculation at the Hartree-Fock (HF) stage and hence, is treated in a variational manner to generate two-component molecular spinors as one-electron wavefunctions for use in the correlated methods. As correlated methods, KPACK currently provides the two-component second-order M${\o}$ller-Plesset perturbation theory (MP2), configuration interaction (CI) and complete-active-space self-consistent field (CASSCF) methods. Test calculations were performed for the ground states of group-14 elements, for which the spin-orbit coupling greatly influences the determination of term symbols. A categorization of three procedures is suggested for the two-component methods on the basis of spin-orbit coupling manifested in the HF level.

Keywords

References

  1. Christiansen, P.A.; Ermler, W. C.; Pitzer, K. S. Annu. Rev. Phys. Chem. 1985, 36, 407. https://doi.org/10.1146/annurev.pc.36.100185.002203
  2. Pyykko, P. Chem. Rev. 1988, 88, 563. https://doi.org/10.1021/cr00085a006
  3. Marian, C. M. In Reviews in Computational Chemistry; Lipkowitz, K. B., Boyd, D. B., Eds.; Springer: Berlin, 2001; Vol. 17, p 99.
  4. Fleig, T. Chem. Phys. 2012, 395, 2. https://doi.org/10.1016/j.chemphys.2011.06.032
  5. Dolg, M.; Cao, X. Chem. Rev. 2012, 112, 403. https://doi.org/10.1021/cr2001383
  6. Lee, Y. S.; Ermler, W. C.; Pitzer, K. S. J. Chem. Phys. 1977, 67, 5861. https://doi.org/10.1063/1.434793
  7. Christiansen, P. A.; Lee, Y. S.; Pitzer, K. S. J. Chem. Phys. 1979, 71, 4445. https://doi.org/10.1063/1.438197
  8. Ermler, W. C.; Lee, Y. S.; Christiansen, P. A.; Pitzer, K. S. Chem. Phys. Lett. 1981, 81, 70. https://doi.org/10.1016/0009-2614(81)85329-8
  9. Lee, S. Y.; Lee, Y. S. J. Comput. Chem. 1992, 13, 595. https://doi.org/10.1002/jcc.540130509
  10. Lee, S. Y.; Lee, Y. S. Chem. Phys. Lett. 1991, 187, 302. https://doi.org/10.1016/0009-2614(91)90430-H
  11. Kim, M. C.; Lee, S. Y.; Lee, Y. S. B. Korean Chem. Soc. 1995, 16, 547.
  12. Kim, M. C.; Lee, S. Y.; Lee, Y. S. Chem. Phys. Lett. 1996, 253, 216. https://doi.org/10.1016/0009-2614(96)00262-X
  13. Han, Y.-K.; Bae, C.; Lee, Y. S.; Lee, S. Y. J. Comput. Chem. 1998, 19, 1526. https://doi.org/10.1002/(SICI)1096-987X(199810)19:13<1526::AID-JCC9>3.0.CO;2-S
  14. Kim, Y. S.; Lee, S. Y.; Oh, W. S.; Park, B. H.; Han, Y. K.; Park, S. J.; Lee, Y. S. Int. J. Quantum Chem. 1998, 66, 91. https://doi.org/10.1002/(SICI)1097-461X(1998)66:1<91::AID-QUA7>3.0.CO;2-V
  15. Lee, H.-S.; Han, Y.-K.; Kim, M. C.; Bae, C.; Lee, Y. S. Chem. Phys. Lett. 1998, 293, 97. https://doi.org/10.1016/S0009-2614(98)00760-X
  16. Kim, Y. S.; Lee, Y. S. J. Chem. Phys. 2003, 119, 12169. https://doi.org/10.1063/1.1626542
  17. Pitzer, R. M.; Winter, N. W. J. Phys. Chem. 1988, 92, 3061. https://doi.org/10.1021/j100322a011
  18. Visscher, L.; Visser, O.; Aerts, P. J. C.; Merenga, H.; Nieuwpoort, W. C. Comput. Phys. Commun. 1994, 81, 120. https://doi.org/10.1016/0010-4655(94)90115-5
  19. Lee, Y. S. In Relativistic Electronic Structure Theory, Part 2: Applications; Schwerdtfeger, P., Ed.; Elsevier: Amsterdam, 2004; p 352.
  20. Dyall, K. G.; Fægri, K. Introduction to Relativistic Quantum Chemistry; Oxford: New York, 2007.
  21. Hafner, P.; Schwarz, W. H. E. Chem. Phys. Lett. 1979, 65, 537. https://doi.org/10.1016/0009-2614(79)80287-0
  22. McMurchie, L. E.; Davidson, E. R. J. Comput. Phys. 1981, 44, 289. https://doi.org/10.1016/0021-9991(81)90053-X
  23. Pitzer, R. M.; Winter, N. W. Int. J. Quantum Chem. 1991, 40, 773. https://doi.org/10.1002/qua.560400606
  24. Obara, S.; Saika, A. J. Chem. Phys. 1986, 84, 3963. https://doi.org/10.1063/1.450106
  25. Helgaker, T.; Jørgensen, P.; Olsen, J. Molecular Electronic-Structure Theory; Wiley: Sussex, 2000.
  26. Dupuis, M.; Rys, J.; King, H. F. J. Chem. Phys. 1976, 65, 111. https://doi.org/10.1063/1.432807
  27. King, H. F.; Dupuis, M. J. Comput. Phys. 1976, 21, 144. https://doi.org/10.1016/0021-9991(76)90008-5
  28. Rys, J.; Dupuis, M.; King, H. F. J. Comput. Chem. 1983, 4, 154. https://doi.org/10.1002/jcc.540040206
  29. Kramers, H. A. Proc. R. Acad. Amsterdam. 1930, 33, 959.
  30. Hafner, P. J. Phys. B-At. Mol. Opt. 1980, 13, 3297. https://doi.org/10.1088/0022-3700/13/17/009
  31. Rosch, N. Chem. Phys. 1983, 80, 1. https://doi.org/10.1016/0301-0104(83)85163-5
  32. Szabo, A.; Ostlund, N. S. Modern Quantum Chemistry; Dover: New York, 1996.
  33. Dongarra, J. J.; Gabriel, J. R.; Koelling, D. D.; Wilkinson, J. H. J. Comput. Phys. 1984, 54, 278. https://doi.org/10.1016/0021-9991(84)90119-0
  34. Pulay, P. Chem. Phys. Lett. 1980, 73, 393. https://doi.org/10.1016/0009-2614(80)80396-4
  35. Esser, M.; Butscher, W.; Schwarz, W. H. E. Chem. Phys. Lett. 1981, 77, 359. https://doi.org/10.1016/0009-2614(81)80164-9
  36. Yoshimine, M. Report RJ-555; IBM Research Laboratory, 1969.
  37. Moller, C.; Plesset, M. S. Phys. Rev. 1934, 46, 618. https://doi.org/10.1103/PhysRev.46.618
  38. Davidson, E. R. J. Comput. Phys. 1975, 17, 87. https://doi.org/10.1016/0021-9991(75)90065-0
  39. Siegbahn, P.; Heiberg, A.; Roos, B.; Levy, B. Phys. Scripta. 1980, 21, 323. https://doi.org/10.1088/0031-8949/21/3-4/014
  40. Roos, B.; Taylor, P.; Siegbahn, P. Chem. Phys. 1980, 48, 157. https://doi.org/10.1016/0301-0104(80)80045-0
  41. Siegbahn, P.; Almlöf, J.; Heiberg, A.; Roos, B. J. Chem. Phys. 1981, 74, 2384. https://doi.org/10.1063/1.441359
  42. Jensen, H. J. A.; Dyall, K. G.; Saue, T.; Fægri, K. J. Chem. Phys. 1996, 104, 4083. https://doi.org/10.1063/1.471644
  43. Thyssen, J.; Fleig, T.; Jensen, H. J. A. J. Chem. Phys. 2008, 129, 034109. https://doi.org/10.1063/1.2943670
  44. Aucar, G. A.; Jensen, H. J. A.; Oddershede, J. Chem. Phys. Lett. 1995, 232, 47. https://doi.org/10.1016/0009-2614(94)01332-P
  45. Kim, I.; Lee, Y. S. Manuscript in preparation.
  46. Roos, B. O. In Lecture Notes in Quantum Chemistry; Roos, B. O., Ed.; Springer: Berlin, 1992; p 177.
  47. Dalgaard, E.; Jorgensen, P. J. Chem. Phys. 1978, 69, 3833. https://doi.org/10.1063/1.437049
  48. Yeager, D. L.; Jorgensen, P. J. Chem. Phys. 1979, 71, 755. https://doi.org/10.1063/1.438363
  49. Fleig, T.; Marian, C. M.; Olsen, J. Theor. Chem. Acc. 1997, 97, 125. https://doi.org/10.1007/s002140050245
  50. Chapman, B.; Jost, G.; van der Pas, R. Using OpenMP; MIT Press: Cambridge, 2007.
  51. NVIDIA, NVIDIA CUDA C Programming Guide (Version 4.2); 2012.
  52. The Portland Group, CUDA Fortran Programming Guide and Reference (Release 2012); 2012.
  53. Yu, Y. J.; Dong, C. Z.; Li, J. G.; Fricke, B. J. Chem. Phys. 2008, 128, 124316. https://doi.org/10.1063/1.2838985
  54. Pitzer, K. S. J. Chem. Phys. 1975, 63, 1032. https://doi.org/10.1063/1.431398
  55. Metz, B.; Stoll, H.; Dolg, M. J. Chem. Phys. 2000, 113, 2563. https://doi.org/10.1063/1.1305880
  56. Stoll, H.; Metz, B.; Dolg, M. J. Comput. Chem. 2002, 23, 767. https://doi.org/10.1002/jcc.10037
  57. Armbruster, M. K.; Weigend, F.; van Wüllen, C.; Klopper, W. Phys. Chem. Chem. Phys. 2008, 10, 1748. https://doi.org/10.1039/b717719d
  58. Liu, W.; van Wüllen, C.; Han, Y. K.; Choi, Y. J.; Lee, Y. S. Adv. Quantum Chem. 2001, 39, 325. https://doi.org/10.1016/S0065-3276(05)39019-8
  59. Sjovoll, M.; Gropen, O.; Olsen, J. Theor. Chem. Acc. 1997, 97, 301. https://doi.org/10.1007/s002140050265
  60. Buenker, R. J.; Alekseyev, A. B.; Liebermann, H.-P.; Lingott, R.; Hirsch, G. J. Chem. Phys. 1998, 108, 3400. https://doi.org/10.1063/1.475739
  61. Yabushita, S.; Zhang, Z.; Pitzer, R. M. J. Phys. Chem. A. 1999, 103, 5791. https://doi.org/10.1021/jp9901242
  62. Fleig, T.; Olsen, J.; Marian, C. M. J. Chem. Phys. 2001, 114, 4775. https://doi.org/10.1063/1.1349076
  63. Wang, F.; Gauss, J.; van Wüllen, C. J. Chem. Phys. 2008, 129, 064113. https://doi.org/10.1063/1.2968136
  64. Kim, I.; Park, Y. C.; Kim, H.; Lee, Y. S. Chem. Phys. 2012, 395, 115. https://doi.org/10.1016/j.chemphys.2011.05.002
  65. NIST ASD Team, NIST Atomic Spectra Database (Version 5.0); NIST, 2012
  66. Balasubramanian, K. Chem. Phys. Lett. 2001, 341, 601. https://doi.org/10.1016/S0009-2614(01)00413-4
  67. Balasubramanian, K. Chem. Phys. Lett. 2002, 351, 161. https://doi.org/10.1016/S0009-2614(01)01265-9

Cited by

  1. Spin–orbit coupling and electron correlation at various coupled-cluster levels for closed-shell diatomic molecules vol.15, pp.41, 2013, https://doi.org/10.1039/c3cp51749g
  2. Toward a QFT-based theory of atomic and molecular properties vol.16, pp.10, 2014, https://doi.org/10.1039/C3CP52685B
  3. Development of spin-dependent relativistic open-shell Hartree-Fock theory with time-reversal symmetry (I): The unrestricted approach vol.117, pp.10, 2017, https://doi.org/10.1002/qua.25356
  4. Development of spin-dependent relativistic open-shell Hartree-Fock theory with time-reversal symmetry (II): The restricted open-shell approach vol.117, pp.10, 2017, https://doi.org/10.1002/qua.25366
  5. Two-component multi-configurational second-order perturbation theory with Kramers restricted complete active space self-consistent field reference function and spin-orbit relativistic effective core potential vol.141, pp.16, 2014, https://doi.org/10.1063/1.4898153
  6. Theoretical developments and applications of polarization propagators pp.00207608, 2018, https://doi.org/10.1002/qua.25722
  7. Equation-of-motion coupled-cluster method for ionised states with spin-orbit coupling using open-shell reference wavefunction vol.116, pp.7-8, 2018, https://doi.org/10.1080/00268976.2018.1439188