DOI QR코드

DOI QR Code

Electroluminescence Characteristics of a New Green-Emitting Phenylphenothiazine Derivative with Phenylbenzimidazole Substituent

  • Ahn, Yeonseon (Department of Chemical Engineering, Kyung Hee University) ;
  • Jang, Da Eun (Department of Applied Chemistry, Kyung Hee University) ;
  • Cha, Yong-Bum (Department of Applied Chemistry, Kyung Hee University) ;
  • Kim, Mansu (Department of Chemical Engineering, Kyung Hee University) ;
  • Ahn, Kwang-Hyun (Department of Applied Chemistry, Kyung Hee University) ;
  • Kim, Young Chul (Department of Chemical Engineering, Kyung Hee University)
  • Received : 2012.09.17
  • Accepted : 2012.10.12
  • Published : 2013.01.20

Abstract

A new green-emitting material with donor-acceptor architecture, 3,7-bis(1'-phenylbenzimidazole-2'-yl)-10-phenylphenothiazine (BBPP) was synthesized and its thermal, optical, and electroluminescent characteristics were investigated. Organic light-emitting diodes (OLEDs) with four different multilayer structures were prepared using BBPP as an emitting layer. The optimized device with the structure of [ITO/2-TNATA (40 nm)/BBPP (30 nm)/TPBi (30 nm)/Alq3 (10 nm)/LiF (1 nm)/Al (100 nm)] exhibited efficient green emission. Enhanced charge carrier balance and electron mobility in the organic layers enabled the device to demonstrate a maximum luminance of 31,300 cd/$m^2$, a luminous efficiency of 6.83 cd/A, and an external quantum efficiency of 1.62% with the CIE 1931 chromaticity coordinates of (0.21, 0.53) at a current density of 100 mA/$cm^2$.

Keywords

References

  1. Tang, C. W.; Vanslyke, S. A. Appl. Phys. Lett. 1987, 51, 913. https://doi.org/10.1063/1.98799
  2. Meyer, J.; Hamwi, S.; Bulow, T.; Johanes, H.-H.; Riedl, T.; Kowalsky, W. Appl. Phys. Lett. 2007, 91, 113506. https://doi.org/10.1063/1.2784176
  3. Yang, Q.; Hao, Y.; Wang, Z.; Li, Y.; Wang, H.; Xu, B. Synthetic Metals 2012, 162, 398. https://doi.org/10.1016/j.synthmet.2011.12.027
  4. Kim, C.; Choi, H.; Kim, S.; Baik, C.; Song, K.; Kang, M.-S.; Kang, S.-O.; Ko, J. J. Org. Chem. 2008, 73, 7072. https://doi.org/10.1021/jo8005182
  5. Dimitrakopoulos, C. D.; Malenfant, P. R. L. Adv. Mater. 2002, 14, 399.
  6. Tessler, N. Adv. Mater. 1999, 11, 363. https://doi.org/10.1002/(SICI)1521-4095(199903)11:5<363::AID-ADMA363>3.0.CO;2-Y
  7. Kulkarni, A. P.; Kong, X.; Jenekhe, S. A. Adv. Funct. Mater. 2006, 16, 1057. https://doi.org/10.1002/adfm.200500722
  8. Wang, R. Y.; Jia, W.-L.; Aziz, H.; Vamvounis, G.; Wang, S.; Hu, N.-X.; Popovic, Z. D.; Coggan, J. A. Adv. Funct. Mater. 2005, 15, 1483. https://doi.org/10.1002/adfm.200500041
  9. Ozelcaglayan, A. C.; Sendur, M.; Akbasoglu, N.; Apaydin, D. H.; Cirpan, A.; Toppare, L. Electrochimica Acta 2012, 67, 224. https://doi.org/10.1016/j.electacta.2012.02.047
  10. Wang, H.-H.; Wu, S.-P. J. Appl. Polym. Sci. 2003, 90, 1435. https://doi.org/10.1002/app.12654
  11. Wang, S.; Zhou, H; Dang, G.; Chen, C. J. Polym. Sci. Part A: Polymer Chemistry 2009, 47, 2024. https://doi.org/10.1002/pola.23306
  12. Kannan, R.; He, G. S.; Yuan, L.; Xu, F.; Prasad, P. N.; Dombroskie, A. G. Chem. Mater. 2001, 13, 1896. https://doi.org/10.1021/cm000747o
  13. Jenekhe, S. A.; Lu, L.; Alam, M. M. Macromolecules 2001, 34, 7315. https://doi.org/10.1021/ma0100448
  14. Weiss, E. A.; Tauber, M. J.; Kelley, R. F.; Ahrens, M. J.; Ratner, M. A.; Wasielewski, M. R. J. Am. Chem. Soc. 2005, 127, 11842. https://doi.org/10.1021/ja052901j
  15. Sun, X.; Liu, Y.; Xu, X.; Yang, C.; Yu, G.; Chen, S.; Zhao, Z.; Qiu, W.; Li, Y.; Zhu, D. J. Phys. Chem. B 2005, 109, 10786.
  16. Lee, S.-H.; Kim, M. S.; Cha, Y.-B.; Ahn, K.-H.; Kim, Y. C. Mol. Cryst. Liq. Cryst. 2010, 520, 36.
  17. Zhang, X.-H.; Kim, S. H.; Lee, I. S.; Gao, C. J.; Yang, S. I.; Ahn, K.-H. Bull. Korean. Chem. Soc. 2007, 28, 1389. https://doi.org/10.5012/bkcs.2007.28.8.1389
  18. Li, D.; Ren, J.; Li, J.; Wang, Z.; Bo, G. Dyes and Pigments 2001, 49, 181. https://doi.org/10.1016/S0143-7208(01)00013-4
  19. Lee, H.; Kim, J. H. Polymer Science and Technology 2007, 18, 488.
  20. Zhang, X.; Wu, Z.; Wang, D.; Wang, D.; Hou, X. J. Appl. Polym. Sci. 2010, 15, 1213.
  21. Peng, X.; Song, F.; Lu, E.; Wang, Y.; Zhou, W.; Fan, J.; Gao, Y. J. Am. Chem. Soc. 2005, 127, 4170. https://doi.org/10.1021/ja043413z
  22. Tao, Y.; Yang, C.; Qin, J. Chem. Soc. Rev. 2011, 40, 2943. https://doi.org/10.1039/c0cs00160k

Cited by

  1. -Substituted Phenothiazine Derivatives: How the Stability of the Neutral and Radical Cation Forms Affects Overcharge Performance in Lithium-Ion Batteries vol.16, pp.6, 2015, https://doi.org/10.1002/cphc.201402674
  2. Crystallisation-enhanced bulk hole mobility in phenothiazine-based organic semiconductors vol.7, pp.2045-2322, 2017, https://doi.org/10.1038/srep46268
  3. Bis[1]benzothieno[1,4]thiazines: Planarity, Enhanced Redox Activity and Luminescence by Thieno‐Expansion of Phenothiazine vol.25, pp.14, 2013, https://doi.org/10.1002/chem.201805085
  4. Game of Isomers: Bifurcation in the Catalytic Formation of Bis[1]benzothieno[1,4]thiazines with Conformation-Dependent Electronic Properties vol.84, pp.9, 2013, https://doi.org/10.1021/acs.joc.9b00517
  5. Dithieno[1,4]thiazines and Bis[1]benzothieno[1,4]thiazines—Organometallic Synthesis and Functionalization of Electron Density Enriched Congeners of Phenothiazine vol.25, pp.9, 2013, https://doi.org/10.3390/molecules25092180
  6. The interplay of conformations and electronic properties in N-aryl phenothiazines vol.7, pp.10, 2020, https://doi.org/10.1039/d0qo00182a
  7. Synthesis and Electronic Properties of Conjugated syn,syn‐Dithienothiazine Donor‐Acceptor‐Donor Dumbbells vol.2022, pp.2, 2013, https://doi.org/10.1002/ejoc.202101398