DOI QR코드

DOI QR Code

Electrical Conductivity, Dielectric Behavior and EMI Shielding Effectiveness of Polyaniline-Yttrium Oxide Composites

  • Faisal, Muhammad (Department of Physics, PES Institute of Technology-Bangalore South Campus) ;
  • Khasim, Syed (Department of Physics, PES Institute of Technology-Bangalore South Campus)
  • Received : 2012.07.20
  • Accepted : 2012.10.12
  • Published : 2013.01.20

Abstract

Polyaniline-yttrium trioxide (PAni-$Y_2O_3$) composites were synthesized by the in-situ polymerization of aniline in the presence of $Y_2O_3$ The composite formation and structural changes in these composites were investigated by X-ray diffraction (XRD), Fourier transform infra red spectroscopy (FTIR), scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM). The direct current (DC) electrical conductivity of the order of $0.51{\times}10^{-2}\;S\;cm^{-1}-0.283\;S\;cm^{-1}$ in the temperature range 300 K-473 K indicates semiconducting behavior of the composites. Room temperature AC conductivity and dielectric response of the composites were studied in the frequency range of 10 Hz to 1 MHz. The variation of AC conductivity with frequency obeyed the power law, which decreased with increasing weight percentage (wt %) of $Y_2O_3$. Studies on dielectric properties shows the relaxation contribution coupled by electrode polarization effect. The dielectric constant and dielectric loss in these composites depend on the content of $Y_2O_3$ with a percolation threshold at 20 wt % of $Y_2O_3$ in PAni. Electromagnetic interference shielding effectiveness (EMI SE) of the composites in the frequency range 100 Hz to 2 GHz was in the practically useful range of -12.2 dB to -17.2 dB. The observed electrical and shielding properties were attributed to the interaction of $Y_2O_3$ particles with the PAni molecular chains.

Keywords

References

  1. Chandrasekhar, P. Conducting Polymers, Fundamentals and Applications: A Practical Approach; Kluwer Academic: Boston, 1999.
  2. Skotheim, T. A.; Elsenbaumer, R. L.; Reynolds, J. R. Handbook of Conducting Polymers, 2nd ed.; Dekker, M., Ed.; New York, 1998.
  3. Genies, E. M.; Boyle, A.; Lapkowski, M.; Tsintavis, C. Synth. Met. 1990, 36, 139. https://doi.org/10.1016/0379-6779(90)90050-U
  4. Alexander, P.; Ogurtsov, N.; Korzhenko, A.; Shapoval, G. Prog. Polym. Sci. 2003, 28, 1701. https://doi.org/10.1016/j.progpolymsci.2003.08.001
  5. Blinova, N. V.; Stejskal, J.; Trchova, M.; Prokes, J.; Omastova, M. Eur. Polym. J. 2007, 43, 2331. https://doi.org/10.1016/j.eurpolymj.2007.03.045
  6. Gospodinova, N.; Terlemezyan, L. Prog. Polym. Sci. 1998, 23, 1443. https://doi.org/10.1016/S0079-6700(98)00008-2
  7. Dey, A.; De, S.; De, A.; De, S. K. Nanotechnology 2004, 15, 1277. https://doi.org/10.1088/0957-4484/15/9/028
  8. Sung, J. H.; Choi, H. J. J. Macromol. Sci. B: Phys. 2005, 44, 365. https://doi.org/10.1081/MB-200057348
  9. Bae, W. J.; Kim, K. H.; Jo, W. H. Macromolecules 2004, 37, 9850. https://doi.org/10.1021/ma048829b
  10. Sarkar, A.; Ghosh, P.; Meikap, A. K.; Chattopadhyay, A. K.; Chatterjee, A. K.; Ghosh, M. J. Phys. D: Appl. Phys. 2006, 39, 3047. https://doi.org/10.1088/0022-3727/39/14/026
  11. Bian, C.; Xue, G. Mater. Lett. 2007, 61, 1299. https://doi.org/10.1016/j.matlet.2006.07.023
  12. Zhang, L.; Wan, M. J. Phys. Chem. B 2003, 107, 6748. https://doi.org/10.1021/jp034130g
  13. Schnitzler, D. C.; Meruvia, M. S.; Hümmelgen, I. A.; Zarbin, A. J. G. Chem. Mater. 2003, 15, 4658. https://doi.org/10.1021/cm034292p
  14. Li, X.; Chen, W.; Bian, C.; He, J.; Xu, N.; Xue, G. Appl. Surf. Sci. 2003, 217, 16. https://doi.org/10.1016/S0169-4332(03)00565-8
  15. Chuang, F.-Y.;Yang, S.-M. Synth. Met. 2005, 152, 361. https://doi.org/10.1016/j.synthmet.2005.07.299
  16. Parvatikar, N.; Jain, S.; Kanamadi, C. M.; Chougule, B. K.; Bhoraskar, S. V.; Ambika Prasad, M. V. N. J. Appl. Polym. Sci. 2007, 103(2), 653. https://doi.org/10.1002/app.23869
  17. Makeiff, D. A.; Huber, T. Synth. Met. 2006, 156, 497. https://doi.org/10.1016/j.synthmet.2005.05.019
  18. Hatchett, D. W.; Josowicz, M. Chem. Rev. 2008, 108, 746. https://doi.org/10.1021/cr068112h
  19. Prakash, S.; Kale, B. B.; Amalnerkar, D. P. Synth. Met. 1999, 106, 53. https://doi.org/10.1016/S0379-6779(99)00109-5
  20. Sathiyanarayanan, S.; Syed Azim, S.; Venkatachari, G. Synth. Met. 2007, 157, 205. https://doi.org/10.1016/j.synthmet.2007.01.012
  21. Gangopadhyay, R.; De, A. Chem. Mater. 2000, 12, 608. https://doi.org/10.1021/cm990537f
  22. Cochet, M.; Maser, W. K.; Benito, A. M.; CalleJas, M. A.; Martinez, M. T.; Benoit, J. M.; Schreiber, J.; Chauvet, O. Chem. Commun. 2001, 16, 1450.
  23. Dyre, J. C.; Shroder, T. B. Rev. Mod. Phys. 2000, 72, 873. https://doi.org/10.1103/RevModPhys.72.873
  24. Wessling, B. Synth. Met. 1988, 27:A, 83. https://doi.org/10.1016/0379-6779(88)90128-2
  25. Singh, K.; Ohlan, A.; Bakshi, A. K.; Dhawan, A. K. Mater. Chem. Phys. 2010, 119, 201. https://doi.org/10.1016/j.matchemphys.2009.08.060
  26. Saini, D.; Choudhary, V.; Singh, B. P.; Mathur, R. B.; Dhawan, S. K. Synth. Met. 2011, 161, 1522. https://doi.org/10.1016/j.synthmet.2011.04.033
  27. Cranton, W. M.; Spink, D. M.; Stevens,V; Thomas, C. B. Thin Solid Films 1993, 226, 156. https://doi.org/10.1016/0040-6090(93)90222-B
  28. Jiayu, D.; Yuan, X.; Pengde, H.; Qitu, Z. J. Rare earth. 2010, 28, 765. https://doi.org/10.1016/S1002-0721(09)60197-6
  29. Schubert, D.; Dargusch, R.; Raitano, J.; Chan, S.-W. Biochem. Biophys. Res. Commun. 2006, 342, 86. https://doi.org/10.1016/j.bbrc.2006.01.129
  30. Syed Khasim; Raghavendra, S. C.; Revanasiddappa, M.; Sajjan, K. C.; Mohana Lakshmi; Muhammad Faisal. Bulletin of Materials Science 2011, 34, 1557. https://doi.org/10.1007/s12034-011-0358-z
  31. Nanni, F.; Travaglia, P.; Valentini, M. Comp. Sci. Tech. 2009, 69, 485. https://doi.org/10.1016/j.compscitech.2008.11.026
  32. Pouget, J. P.; Jozefowicz, M. E.; Epstein, A. J.; Tang, X.; MacDiarmid, A. G. Macromolecules 1991, 24, 779. https://doi.org/10.1021/ma00003a022
  33. Du, J.; Liu, Z.; Han, B.; Li, Z.; Zhang, J.; Huang, Y. Micropor. Mesopor. Mat. 2005, 84, 254. https://doi.org/10.1016/j.micromeso.2005.05.036
  34. Kang, E. T.; Neoh, K. G.; Tan, K. L. Prog. Polym. Sci. 1998, 23, 277. https://doi.org/10.1016/S0079-6700(97)00030-0
  35. Durmus, Z.; Baykal, A.; Kavas, H.; Ozeri, H. S. Physica B 2011, 406, 1114.
  36. Kulkarni, M. V.; Viswanath, A. K.; Marimuthu, R.; Seth, T. Polym. Eng. Sci. 2004, 44, 1676. https://doi.org/10.1002/pen.20167
  37. Sapurina, I.; Stejskal, J. Polym Int. 2008, 57, 1295. https://doi.org/10.1002/pi.2476
  38. Anilkumar, K. R.; Parveen, A.; Badiger, G. R.; Ambika Prasad, M. V. N. Physica B 2009, 404, 1664. https://doi.org/10.1016/j.physb.2009.01.046
  39. Stejskal, J.; Gilbert, R. G. Pure Appl. Chem. 2002, 74, 857. https://doi.org/10.1351/pac200274050857
  40. Zhang, D. Polym. Test. 2007, 26, 9. https://doi.org/10.1016/j.polymertesting.2006.07.010
  41. Li, X.; Li, X.; Wang, G. Mater. Chem. Phys. 2007, 102, 140. https://doi.org/10.1016/j.matchemphys.2006.11.014
  42. Long, Y.; Chen, Z.; Shen, J.; Zhang, Z.; Zhang, L.; Huang, K.; Wan, M.; Jin, A.; Gu, C.; Duvail, J. L. Nanotechnology 2006, 17, 5903. https://doi.org/10.1088/0957-4484/17/24/001
  43. Mott, N. F.; Davis, E. A. Electronic Processes in Non-crystalline Materials, Oxford: Clarendon Press; New York: Oxford University Press, 1979.
  44. Reghu, M.; Subramanyam, S. V.; Chatterjee, S. Phys. Rev. B 1991, 43, 4236. https://doi.org/10.1103/PhysRevB.43.4236
  45. Papathanassiou, A. N.; Sakellis, I.; Grammatikakis, J. Appl. Phys. Lett. 2007, 91, 122911. https://doi.org/10.1063/1.2779255
  46. Bowen, C. R.; Dent, A. C. E.; Almond, D. P.; Comyn, T. P. Ferroelectrics 2008, 370, 166. https://doi.org/10.1080/00150190802381522
  47. Papathanassiou, A. N.; Sakellis, I.; Grammatikakis, J.; Sakkopoulos, S.; Vitoratos, E.; Dalas, E. Synth. Met. 2004, 42, 81.
  48. Hunt, A. G. Phil. Mag. B 2001, 81, 875. https://doi.org/10.1080/13642810108205779
  49. Jiang, J.; Ai, L. H.; Qin, D. B.; Liu, H.; Li, L. C. Synth. Met. 2009, 159, 695. https://doi.org/10.1016/j.synthmet.2008.12.021
  50. Kim, H. M.; Lee, C. Y.; Joo, J. Korean Phys. Soc. 2000, 36, 371.
  51. Pinto, N. J.; Shah, P. D.; Kahol, P. K.; McCormic, B. J. Solid State Commun. 1996, 97, 1029. https://doi.org/10.1016/0038-1098(95)00853-5
  52. Baskran, R.; Selvasekarapandian, S.; Hirankumar, G.; Bhuvaneswari, M. S. J. Power Source 2004, 134, 235. https://doi.org/10.1016/j.jpowsour.2004.02.025
  53. Thomas, P.; Dwarakanath, K.; Varma, K. B. R. Synth. Met. 2009, 159, 2128. https://doi.org/10.1016/j.synthmet.2009.08.001
  54. Saini, P.; Choudhary, V. Singh, B. P.; Mathur, R. B.; Dhawan, S. K. Mater. Chem. Phys. 2009, 113, 919. https://doi.org/10.1016/j.matchemphys.2008.08.065
  55. Pramanik, P. K.; Saha, T. N.; Khastgir, D. J. Elastomers Plast. 1991, 23, 345. https://doi.org/10.1177/009524439102300406

Cited by

  1. Analysis of DC and AC properties of a humidity sensor based on polyaniline–chromium oxide composites vol.25, pp.3, 2014, https://doi.org/10.1007/s10854-014-1715-7
  2. Novel Method to Synthesize Highly Conducting Polyaniline/ Nickel Sulfide Nanocomposite Films and the Study of Their Structural, Magnetic, and Electrical Properties vol.50, pp.8, 2014, https://doi.org/10.1109/TMAG.2014.2320448
  3. Dielectric Constant and Transport Mechanism of Percolated Polyaniline Nanoclay Composites. vol.53, pp.43, 2014, https://doi.org/10.1021/ie502922b
  4. Electromagnetic interference shielding boards produced using Tetra Paks waste and iron fiber vol.17, pp.2, 2015, https://doi.org/10.1007/s10163-014-0255-9
  5. Humidity sensing properties of surface modified polyaniline ZnO nanocomposites vol.35, pp.4, 2015, https://doi.org/10.1108/SR-01-2015-0024
  6. Fabrics and their composites for electromagnetic shielding applications vol.47, pp.2, 2015, https://doi.org/10.1080/00405167.2015.1067077
  7. Fabrication of a novel PANI/[Co(NH3)4(C3H4N2)2]Cl3 nanocomposite with enhanced dielectric constant and ac-conductivity vol.28, pp.19, 2017, https://doi.org/10.1007/s10854-017-7279-6
  8. Preparation of Alkylated and Perfluorinated ZnPc-modified Carbon Nanotubes and their Application as Conductive Fillers for Poly(vinylidene fluoride) Composite Dielectrics vol.38, pp.10, 2017, https://doi.org/10.1002/bkcs.11246
  9. Low and high frequency shielding effectiveness of PVC-PPy films pp.1436-2449, 2017, https://doi.org/10.1007/s00289-017-2143-7
  10. Electrical Properties Investigation of Unsaturated Polyester Resin with Carbon Black as Fillers vol.554, pp.1662-7482, 2014, https://doi.org/10.4028/www.scientific.net/AMM.554.145
  11. The effect of molecular structure, band gap energy and morphology on the dc electrical conductivity of polyaniline/aluminium oxide composites vol.19, pp.sup8, 2015, https://doi.org/10.1179/1432891715Z.0000000001688
  12. Optimized polyaniline-transition metal oxide composites: A comparative study of alternating current conductivity via correlated barrier hopping model vol.39, pp.10, 2017, https://doi.org/10.1002/pc.24375
  13. Influence of Nickel Layer on Electromagnetic Interference Shielding Effectiveness of CuS-Polyacrylonitrile Fibers pp.12295949, 2018, https://doi.org/10.1002/bkcs.11615
  14. with improved electromagnetic shielding properties in X-band vol.135, pp.26, 2018, https://doi.org/10.1002/app.46413
  15. Enhancement in alternating current conductivity of HCl doped polyaniline by modified titania pp.1568-5543, 2018, https://doi.org/10.1080/09276440.2018.1499352
  16. Effect of mechanical mixing method of preparation of polyaniline-transition metal oxide composites on DC conductivity and humidity sensing response vol.29, pp.9, 2018, https://doi.org/10.1007/s10854-018-8714-z
  17. Electromagnetic Interference Shielding Polymers and Nanocomposites - A Review pp.1558-3716, 2019, https://doi.org/10.1080/15583724.2018.1546737
  18. Highly conductive polyaniline/graphene nano-platelet composite sensor towards detection of toluene and benzene gases vol.125, pp.1, 2019, https://doi.org/10.1007/s00339-018-2317-7
  19. Effect of 8 MeV electron beam irradiation on the structural, optical and electrical properties of a PANI-MnWO4 nanocomposite vol.134, pp.1, 2019, https://doi.org/10.1140/epjp/i2019-12462-0
  20. X-band microwave absorption and dielectric properties of polyaniline-yttrium oxide composites vol.14, pp.3, 2013, https://doi.org/10.1515/epoly-2013-0079
  21. X-band microwave absorption and dielectric properties of polyaniline-yttrium oxide composites vol.14, pp.3, 2013, https://doi.org/10.1515/epoly-2013-0079
  22. Electromagnetic Interference Shielding Effectiveness and Electrical Conductivity of Ni Coated Pcabs/Pps Composites with Reinforcement of Carbon Fibre vol.24, pp.1, 2016, https://doi.org/10.1177/096739111602400107
  23. Chemically synthesized poly(o-methoxyaniline): Influence of counterions on the structural and electrical properties vol.1205, pp.None, 2013, https://doi.org/10.1016/j.molstruc.2019.127588
  24. Review-Electrocatalytic Oxidation of Alcohols Using Chemically Modified Electrodes: A Review vol.167, pp.13, 2013, https://doi.org/10.1149/1945-7111/abb9d0
  25. Cost effective photocatalytic and humidity sensing performance of green tea mediated copper oxide nanoparticles vol.134, pp.None, 2013, https://doi.org/10.1016/j.inoche.2021.108974