DOI QR코드

DOI QR Code

Influence of Reaction Conditions on the Grafting Pattern of 3-Glycidoxypropyl trimethoxysilane on Montmorillonite

  • He, Wentao (National Engineering Research Center for Compounding and Modification of Polymeric Materials, and College of Materials Science and Metallurgy Engineering, GuiZhou University) ;
  • Yao, Yong (National Engineering Research Center for Compounding and Modification of Polymeric Materials, and College of Materials Science and Metallurgy Engineering, GuiZhou University) ;
  • He, Min (National Engineering Research Center for Compounding and Modification of Polymeric Materials, and College of Materials Science and Metallurgy Engineering, GuiZhou University) ;
  • Kai, Zhang (National Engineering Research Center for Compounding and Modification of Polymeric Materials, and College of Materials Science and Metallurgy Engineering, GuiZhou University) ;
  • Long, Lijuan (National Engineering Research Center for Compounding and Modification of Polymeric Materials, and College of Materials Science and Metallurgy Engineering, GuiZhou University) ;
  • Zhang, Minmin (National Engineering Research Center for Compounding and Modification of Polymeric Materials, and College of Materials Science and Metallurgy Engineering, GuiZhou University) ;
  • Qin, Shuhao (National Engineering Research Center for Compounding and Modification of Polymeric Materials, and College of Materials Science and Metallurgy Engineering, GuiZhou University) ;
  • Yu, Jie (National Engineering Research Center for Compounding and Modification of Polymeric Materials, and College of Materials Science and Metallurgy Engineering, GuiZhou University)
  • Received : 2012.09.18
  • Accepted : 2012.10.12
  • Published : 2013.01.20

Abstract

Surface modification of montmorillonite (MMT) with 3-glycidoxypropyl trimethoxysilane (3GTO) in mild methanol/water mixture has been investigated in detail. The influence of reaction conditions (including silane concentration in feed, reaction time and reaction temperature) on the grafting amount and yield of silane, and further on the grafting pattern of silanes was studied by thermogravimetric analysis, elemental analysis, X-ray diffraction (XRD) and BET. Higher silane concentration, longer reaction time and higher reaction temperature are all benefit to higher grafting amount. When the grafting reaction was performed with 3 mmol/g silane concentration, at $90^{\circ}C$ for 24 h, the grafted amount and yield of silane reached 1.4443 mmol/g and 30%, respectively. Based on the XRD and BET data analysis, a speculation that the grafting pattern of silanes was concentration dependence was proposed.

Keywords

References

  1. Usuki, A.; Kawasumi, M.; Kojima, Y.; Okada, A.; Kurauchi, T.; Kamigaito, O. J. Mater. Res. 1993, 8, 1174. https://doi.org/10.1557/JMR.1993.1174
  2. Manias, E.; Touny, A.; Wu, L.; Strawhecker, K.; Lu, B.; Chung, T. Chem. Mater. 2001, 13, 3516. https://doi.org/10.1021/cm0110627
  3. Leu, C. M.; Wu, Z. W.; Wei, K. H. Chem. Mater. 2002, 14, 3016. https://doi.org/10.1021/cm0200240
  4. Juang, T. Y.; Chen, Y. C.; Tsai, C. C.; Dai, S. A.; Wu, T. M.; Jeng, R. J. Appl. Clay Sci. 2010, 48, 103. https://doi.org/10.1016/j.clay.2009.11.049
  5. Brnardic, I.; Huskic, M.;Zigon, M.; Ivankovic, M. J. Non-cryst. Solids. 2008, 354, 1986. https://doi.org/10.1016/j.jnoncrysol.2007.11.008
  6. Rzayev, Z. M. O.; enol, B.; Soylemez, E. A. Eng. 2011, 3, 1446.
  7. Xie, W.; Gao, Z.; Pan, W. P.; Hunter, D.; Singh, A.; Vaia, R. Chem. Mater. 2001, 13, 2979. https://doi.org/10.1021/cm010305s
  8. Krishna, S. V.; Pugazhenthi, G. Int. J. Polym. Mater. 2010, 60, 144. https://doi.org/10.1080/00914037.2010.504167
  9. He, H.; Duchet, J.; Galy, J.; Gerard, J. F. J. Colloid Interface Sci. 2005, 288, 171. https://doi.org/10.1016/j.jcis.2005.02.092
  10. Herrera, N. N.; Letoffe, J. M.; Reymond, J. P.; Bourgeat-Lami, E. J. Mater. Chem. 2005, 15, 863. https://doi.org/10.1039/b415618h
  11. Wang, L.; Wang, K.; Chen, L.; He, C.; Zhang, Y. Polym. Eng. Sci. 2006, 46, 215. https://doi.org/10.1002/pen.20453
  12. Shanmugharaj, A.; Rhee, K. Y.; Ryu, S. H. J. Colloid Interface Sci. 2006, 298, 854. https://doi.org/10.1016/j.jcis.2005.12.049
  13. Yang, S.; Yuan, P.; He, H.; Qin, Z.; Zhou, Q.; Zhu, J.; Liu, D. Appl. Clay Sci. 2012, 62, 8. https://doi.org/10.1016/j.clay.2012.04.006
  14. Park, M.; Shim, I. K.; Jung, E. Y.; Choy, J. H. J. Phys. Chem. Solids 2004, 65, 499. https://doi.org/10.1016/j.jpcs.2003.10.031
  15. Frost, R. L.; Daniel, L. M.; Zhu, H. Y. J. Colloid Interface Sci. 2008, 321, 302. https://doi.org/10.1016/j.jcis.2008.01.032
  16. Park, K. W.; Kwon, O. Y. Bull. Korean Chem. Soc. 2004, 25, 965. https://doi.org/10.5012/bkcs.2004.25.7.965
  17. Shen, W.; He, H.; Zhu, J.; Yuan, P.; Frost, R. L. J. Colloid Interface Sci. 2007, 313, 268. https://doi.org/10.1016/j.jcis.2007.04.029
  18. Piscitelli, F.; Posocco, P.; Toth, R.; Fermeglia, M.; Pricl, S.; Mensitieri, G.; Lavorgna, M. J. Colloid Interface Sci. 2010, 351, 108. https://doi.org/10.1016/j.jcis.2010.07.059
  19. Chen, G. X., Kim, H. S.; Shim, J. H.; Yoon, J.-S. Macromol. 2005, 38, 3738. https://doi.org/10.1021/ma0488515
  20. Xie, W.; Xie, R.; Pan, W. P.; Hunter, D.; Koene, B.; Tan, L. S.; Vaia, R. Chem. Mater. 2002, 14, 4837. https://doi.org/10.1021/cm020705v
  21. Lin, J. J.; Hsu, Y. C.; Wei, K. L. Macromol. 2007, 40, 1579. https://doi.org/10.1021/ma062508d
  22. Dai, J. C.; Huang, J. T. Appl. Clay Sci. 1999, 15, 51. https://doi.org/10.1016/S0169-1317(99)00020-4

Cited by

  1. Effect of reaction media on clay dispersion and mechanical properties in poly(butylene succinate)/organoclay nanocomposites vol.22, pp.4, 2015, https://doi.org/10.1002/vnl.21461
  2. Enhanced dispersion of nanoclays in poly(ethylene terephthalate)/clay nanocomposites using supercritical carbon dioxide vol.23, pp.10835601, 2016, https://doi.org/10.1002/vnl.21546
  3. Morphology and mechanical properties of polypropylene/ethylene acrylic acid/maleic anhybride-grafted polypropylene/organoclay nanocomposites vol.30, pp.3, 2017, https://doi.org/10.1177/0892705715598364
  4. Effect of Surfactant Concentration on Thermal and Mechanical Properties of Poly(Butylene Succinate)/Organoclay Composites vol.56, pp.7, 2017, https://doi.org/10.1080/00222348.2017.1327298
  5. Role of silane concentration on the structural characteristics and properties of epoxy-/silane-modified montmorillonite clay nanocomposites vol.49, pp.8, 2017, https://doi.org/10.1177/0095244316683546