DOI QR코드

DOI QR Code

Leaching of Ruthenium by Electro-generated Chlorine Gas by Electrochemical Method

전기화학법(電氣化學法)에 의해 생성(生成)된 전해생성(電解生成) 염소(鹽素)를 이용한 루테늄의 침출(浸出)

  • Ahn, Jong-Gwan (Dept. of Resources Recycling and Environmental Eng., Jungwon Univ.) ;
  • Lee, Ah-Rum (Attached Research Center, Sungeel Hightech Co., LTD.) ;
  • Kim, Min-Seuk (Mineral Resource Research, Korea Institute of Geoscience and Resources) ;
  • Ahn, Jae-Woo (Dept. of Adv. Mat. Eng., Daejin Univ.) ;
  • Lee, Jae-Ryeoung (Dept. of Energy & Resources Eng., Kangwon National Univ.)
  • 안종관 (중원대학교 자원순환환경공학과) ;
  • 이아름 (성일High-tech Co., 부설기술연구소) ;
  • 김민석 (한국지질자원연구원 광물자원연구본부) ;
  • 안재우 (대진대학교 신소재공학과) ;
  • 이재령 (강원대학교 에너지.자원공학과)
  • Received : 2013.10.21
  • Accepted : 2013.12.05
  • Published : 2013.12.31

Abstract

In this study, a electrochemical-chemical combined dissolution technology was conducted by electro-generated chlorine to obtain ruthenium solution from ruthenium metal. To find out the optimum leaching conditions of ruthenium in chloride solution, this leaching process was carried out on the variation of pH, reaction time, temperature and applied voltage at the electro-generated chlorine system in the reaction bath. Also, ozone generator was used to obtain ruthenium(III) chloride solution to increase the leaching rate. The optimum condition was observed at pH 10.0, $40^{\circ}C$ within 1 hr of reaction time that more than 88% of ruthenium(III) chloride dissolved.

본 연구에서는 전기화학법으로 생성된 염소를 산화제로 이용하여 루테늄의 침출에 대한 연구를 수행하였다. 휘발성 루테늄산화물의 손실을 막기 위해 전 시스템이 밀폐형으로 제작된다. 루테늄의 침출의 최적조건을 조사하기 위해 pH, 온도, 전해 염소 생성시 인가전류 등의 영향을 조사하였다. 염소전해생성 시스템에 산화전류를 인가하여 염소가스를 발생시키고 침출조에 공급하여 루테늄 용해에 필요한 염소화합물을 생성시켰다. 산화제인 염소화합물의 농도가 포화상태에 도달하였을 때 루테늄 분말시료를 장입하고 침출반응을 진행하였다. 일정시간 간격으로 침출액을 채취하면서 루테늄 침출농도를 분석하였다. 본 실험결과 최적조건은 pH 10, 2 A, $40^{\circ}C$로 이 때 침출률은 88% 이다.

Keywords

References

  1. Jong-Gwan Ahn, Ki-Woong Lee, Kang-Myoung Lee, 2008: "Application of Ru and Os", Trends in Metals & Materials Eng., 21 pp. 33-39.
  2. Jong-Gwan Ahn, Kang-Myoung Lee, JaeRyeoung Lee, 2009: "Properties and Recovery Technologies for Rare-Platinum Groups using Patents Information", 18, pp. 3-13.
  3. Tanaka KikkinJoku Co., Annual Report, 1987: "Platinum Groups Metals", pp. 147-226.
  4. Tanaka KikkinJoku Co., Annual Report, 1985: "Platinum Groups Metals", pp. 94-148.
  5. In-Soo Jin, 2007: Korea Patents No. KR20070046506.
  6. Korea Atomic Energy Research Institute Reports, 1998: "Recovery and manufacturing tech. of catalyst from platinum groups metals", pp. 5-15.
  7. H. Renner, 1997: "Platinum Group Metals", in Handbook of Extractive Metallurgy, Edited by F. Habashi, Germany, pp. 1275.
  8. J. Shibata, 2002: "Solvent Extraction of Precious Metals", The Journal of the Metal Finishing Society, 53, pp. 641.
  9. M. S. Kim, K. K. Yoo and B. S. Kim, 2007: "Technical review on separation and recovery of Platinum group metals", J. of Kor. Soc. of Min. and Energy Res. Eng., 44 pp. 324-327.
  10. J. C. Lee, M. S. Kim, and K. K. Yoo, 2008: "Extractive Metallurgy of Platinum Group Metals", J. Kor. Inst. Met.& Mater. 21, pp. 23-25.
  11. Marcel Pourbaix, 1974: "Atlas of Electrochemical Equilibria in aqueous solution", 2nd Ed., NACE, pp. 346, Houston, USA.
  12. Vernon L. Snoeyink, David Jekins, 1980: "Water chemistry", 1st Ed., John Wiley & Sons, pp. 388, U.S.A..
  13. Mahir Alkan, Munir Oktay, M. Muthtar Kocakerim, 2005 : "Solubility of chlorine in aqueous hydrochloric acid solutions", 119.