DOI QR코드

DOI QR Code

Soil Physical and Chemical Properties with Plantation Regions and Stand Age in Pinus rigida and Larix kaempferi Plantations

리기다소나무와 낙엽송 인공림의 지역 및 임령에 따른 토양 특성

  • Yang, A-Ram (Forest Practice Research Center, Korea Forest Research Institute) ;
  • Hwang, Jaehong (Forest Practice Research Center, Korea Forest Research Institute) ;
  • Cho, Minseok (Forest Practice Research Center, Korea Forest Research Institute) ;
  • Song, Sun-Wha (Department of Environmental Science and Ecological Engineering, Korea University)
  • 양아람 (국립산림과학원 산림생산기술연구소) ;
  • 황재홍 (국립산림과학원 산림생산기술연구소) ;
  • 조민석 (국립산림과학원 산림생산기술연구소) ;
  • 송선화 (고려대학교 일반대학원 환경생태공학과)
  • Received : 2013.09.05
  • Accepted : 2013.11.21
  • Published : 2013.12.31

Abstract

This study was performed in Pinus rigida and Larix kaempferi plantations which occupy approximately 60% of artificial forest area in Korea. The objective of this study was to know the differences in soil physical and chemical properties between both plantations. Soil physical and chemical properties from published literature and analyzed soil data in national forest in 2010 and 2011 were analyzed by plantation regions and stand age of 5 years unit. Jeollanamdo in Pinus rigida plantations and Gyeongsangbuk-do in Larix kaempferi plantations showed higher soil chemical properties than those of other regions. Soil texture in both plantations was almost loam and sandy loam. Mean soil pH in Pinus rigida and Larix kaempferi plantations were 4.86 and 4.87, respectively and there was no relationship between soil pH and stand age. The mean concentrations of total nitrogen (%) and available phosphorus (mg $kg^{-1}$) were 0.21 and 11.00 for Pinus rigida plantation and 0.28 and 13.32 for Larix kaempferi plantation. In Larix kaempferi plantation, total nitrogen, available phosphorus and organic matter concentrations and C.E.C. were higher than those in Pinus rigida plantation and showed positive relationship with stand age. This positive relationship was also revealed between the exchangeable cations and soil pH. The results of this study provide an informative data in selecting tree species for planting and contribute to the establishing forest management plan for the maintenance of sustainable forests resources.

본 연구는 우리나라 침엽수림 면적의 약 1/3을 차지하는 리기다소나무와 낙엽송 인공림을 대상으로 지역 및 임령에 따른 토양의 물리 화학적 특성을 파악하여, 이들 인공림의 벌채 후 진행되는 조림 사업에 필요한 기초 자료를 얻고자 수행하였다. 두 인공림에 대한 토양 특성은 기존 보고된 문헌자료와 2년(2010, 2011년) 동안 전국 국유림 내에서 조사 분석한 토양 특성 결과를 바탕으로 지역 및 임령별로 나누어 분석하였다. 리기다소나무 인공림 내 전라남도 지역과 낙엽송 인공림 내 경상북도 지역의 토양 특성이 동일 수종의 임분 내 다른 지역보다 양호하였다. 두 인공림의 토성은 대부분 양토 혹은 사질양토였고, 토양 pH 값은 리기다소나무와 낙엽송 인공림에서 각각 4.86, 4.87로 나타났으며, 토양 pH는 임령 증가에 따라 일정한 경향을 보이지 않았다. 리기다소나무와 낙엽송 인공림의 전질소 농도(%)는 각각 0.21, 0.28이었고, 유효인산 농도($mg{\cdot}kg^{-1}$)는 각각 11.00, 13.32로 나타났다. 낙엽송 인공림 내 전질소, 유효인산, 유기물 농도 및 양이온치환용량은 리기다소나무 인공림보다 높고, 은, 임령이 증가함에 따라 농도가 증가하는 경향을 보였으며, 치환성양이온($Ca^{2+}$, $Mg^{2+}$, $K^+$)은 토양 pH와 정의 상관관계를 나타냈다. 두 인공림에 대한 토양 특성 분석 결과는 리기다소나무 벌채와 낙엽송 주벌 실시 후 요구되는 조림지 관리에 적용할 수 있으며, 토양 양분 특성 등을 고려한 맞춤형 조림 수종 선정과 조림지 관리에 활용하여 지속적인 산지 자원화에 기여할 수 있을 것으로 판단된다.

Keywords

References

  1. Burke, I.C., Yonker, C.M., Parton, W.J., Cole, C.V., Flach, K., and Schimel, D.S. 1989. Texture, climate, and cultivation effects on soil organic content in U.S. grassland soils. Soil Science Society of America Journal 53: 800-805. https://doi.org/10.2136/sssaj1989.03615995005300030029x
  2. Chung, I.K. 1981. Analysis on the relation between the morphological physical and chemical properties of forest soils and the growth of the Pinus koraiensis Sieb. et Zucc. and Larix leptolepis Gord by Quantification. Journal of Korean Forest Society 53: 1-26 (in Korean with English abstract).
  3. Chung, Y.G., Hong, B.W., and Kim, J.M. 1980. Relation between chemical properties of soil and tree growth. Journal of Korean Forest Society 46: 10-20 (in Korean with English abstract).
  4. Garten, C.T. Jr., Huston, M.A., and Thomas, C.A. 1994. Topographic variation of soil nitrogen dynamics at Walker branch watershed, Tennessee. Forest Science 40(3): 497-512.
  5. Heath, L.S. and Smith, J.E. 2000. Soil carbon accounting and assumptions for forestry and forest-related land use change. In: Joyce, L.A., and Birdsey, R. (eds) The impact of climate change on America's forests. A technical document supporting the 2000 USDA Forest service RPA Assessment. general technical report RMRS-GTR-59. USDA Forest Service, Rocky Mountain Research Station, Fort Collins, Colo., pp. 89-101.
  6. Hwang, J. and Son, Y. 2006. Short-term effects of thinning and liming on forest soils of pitch pine and Japanese larch plantations in central Korea. Ecological Research 21(5): 671-680. https://doi.org/10.1007/s11284-006-0170-1
  7. Jeong, J.H., Koo, K.S., Lee, C.H., and Kim, C.S. 2002. Physico-chemical properties of Korean forest soils by regions. Journal of Korean Forest Society 91(6): 694-700 (in Korean with English abstract).
  8. Jeong, J.H., An, B.Y., and Kang, Y.H. 1998. Distribution and physico-chemical properties of forest soils in Namsan, Seoul. Forest Research Institute Journal of Korean Forest Society 57: 204-212 (in Korean with English abstract).
  9. Jin, H.O., Yi, M.J., Shin, Y.O., Kim, J.J., and Jeon, S.K. 1994. Forest Soil. Hyangmunsa. Seoul, Korea. pp. 324 (in Korean).
  10. KFS. 2012a. 42th Statistical Yearbook of Forestry. Korea Forest Service. pp. 491 (in Korean).
  11. KFS 2012b. Annual Action Plan of Forest Resources. Korea Forest Service. pp. 311 (in Korean).
  12. Kim, C. 1999. Aboveground nutrient distribution in pitch pine (Pinus rigida) and Japanese larch (Larix leptolepis) plantations. Journal of Korean Forestry Society 88(2): 266-272.
  13. Kim, C. and Cho, H.S. 2004. Quantitative comparisons of soil carbon and nutrient storage in Larix leptolepis, Pinus densiflora and Pinus rigitaeda plantations. Korean Journal of Ecology 27(2): 67-71. https://doi.org/10.5141/JEFB.2004.27.2.067
  14. Kim, D.Y. and Hwang, I.C. 1998. Soil acidification and soil buffer capacity change in urban forests of seoul area. Journal of Korean Forest Society 87(2): 188-193 (in Korean with English abstract).
  15. Kim, J.S., Son, Y., Lim, J.H., and Kim, Z.S. 1996. Aboveground biomass, N and P distribution, and litterfall in Pinus rigida and Larix leptolepis plantations. Journal of Korean Forest Society 85(3): 416-425 (in Korean with English abstract).
  16. Lee, D.K. and Kim, G.T. 1997. Tree form and biomass allocation of Quercus species, Larix leptolepis(Sieb. et Zucc.) gordon and Pinus koraiensis Seib. et Zucc. in Kwangju-Grn, Kyunggi-Do. Journal of Korean Forest Society 86(2): 208-213 (in Korean with English abstract).
  17. Lee, I.K. and Son, Y. 2004. Effects of nitrogen and phosphorus fertilization on soil chemical properties of Pinus rigida and Larix kaempferi plantations in Yangpyeong area, Gyeonggi province. Journal of Korean Forest Society, 93(5): 349-359 (in Korean with English abstract).
  18. Lee, S.W. 1981. Studies on forest soils in Korea (II). Journal of Korean Forest Society 54: 25-35 (in Korean with English abstract).
  19. Lee, S.W. and Park, G.S. 2001. Experimental assessment of forest soil sensitivity to acidification (I) -Application of prediction models for acid neutralization responses-. Journal of Korean Forest Society 90(1): 133-138 (in Korean with English abstract).
  20. Noh, N.J., Son, Y., Lee, S.K., Seo, K.W., Heo, S.J., Yi, M.J., Park, P.S., Kim, R.H., Son, Y.M., and Lee, K.H. 2010. Carbon and nitrogen storage in an age-sequence of Pinus densiflora stands in Korea. Science China Life Science 53(7): 822-830.
  21. Peichl, M. and Arain, M.A. 2006. Above- and belowground ecosystem biomass and carbon pools in an age-sequence of temperate pine plantation forests. Agricultural and Forest Meteorology 140(1-4): 51-63. https://doi.org/10.1016/j.agrformet.2006.08.004
  22. SAS Institute Inc. 2009. SAS/STAT(R) 9.2 User's Guide. SAS Institute Inc., Cary.
  23. Smithwick, E.A.H., Kashian, D.M., Ryan, M.G., and Turner, M.G. 2009. Long-term nitrogen storage and soil nitrogen availability in post-fire lodgepole pine ecosystems. Ecosystems 12: 792-806. https://doi.org/10.1007/s10021-009-9257-1
  24. Son, Y. and Lee, I.K. 1997. Soil nitrogen mineralization in adjacent stands of larch, pine and oak in central Korea. Annals of Forest Science 54(1): 1-8. https://doi.org/10.1051/forest:19970101
  25. Vance, E.D. 2003. Approaches and technologies for detecting changes in forest soil carbon pools. Soil Science Society of America Journal 67: 1582. https://doi.org/10.2136/sssaj2003.1582
  26. Vesterdal, L., Schmidt, I.K., Callesen, I., Nilsson, L.O., and Gundersen, P. 2008. Carbon and nitrogen in forest floor and mineral soil under six common European tree species. Forest Ecology and Management 255(1): 35-48. https://doi.org/10.1016/j.foreco.2007.08.015

Cited by

  1. The effect of fertilization on early growth of konara oak and Japanese zelkova seedlings planted in a harvested pitch pine plantation vol.27, pp.4, 2016, https://doi.org/10.1007/s11676-016-0210-9
  2. The Effect of Seedling Types and Soil Properties in Relation to Aspects on the Early Growth of Planted Zelkova serrata Seedlings vol.48, pp.4, 2014, https://doi.org/10.14397/jals.2014.48.4.1
  3. Development of Local Stem Volume Table for Pinus rigida Miller by the Best Stem Taper Equation vol.49, pp.6, 2015, https://doi.org/10.14397/jals.2015.49.6.87
  4. for Deogyu Mountain in South Korea vol.14, pp.3, 2018, https://doi.org/10.1080/21580103.2018.1482793
  5. 낙엽송 벌채지 내 식재된 낙엽송 조림목의 초기 생장 특성 vol.106, pp.1, 2017, https://doi.org/10.14578/jkfs.2017.106.1.10
  6. 지황 및 토양 인자가 낙엽송 벌채지 내 낙엽송 조림목의 초기 생장에 미치는 영향 vol.107, pp.1, 2018, https://doi.org/10.14578/jkfs.2018.107.1.35
  7. 백두대간 마루금 복원사업지에서의 5년 경과 후 토양특성 및 소나무 생장 모니터링 vol.33, pp.4, 2019, https://doi.org/10.13047/kjee.2019.33.4.453