DOI QR코드

DOI QR Code

Analysis of Influence on Stream Water Quality by Soil Erosion Control Structures

사방공작물이 계류수질에 미치는 영향 분석

  • Park, Jae-Hyeon (Department of Forest Resources, Gyeongnam National University of Science and Technology) ;
  • Kim, Choonsig (Department of Forest Resources, Gyeongnam National University of Science and Technology)
  • 박재현 (경남과학기술대학교 산림자원학과) ;
  • 김춘식 (경남과학기술대학교 산림자원학과)
  • Received : 2013.08.21
  • Accepted : 2013.09.11
  • Published : 2013.12.31

Abstract

This study was carried out to establish the construction guidelines of soil erosion control structures for a restoration of mountain stream with analysis of water quality around constructed soil erosion control structures in mountain streams. Water pH of the Uidong valleys in Bukhansan (Mt.) was similar between the constructed soil erosion control structures of lower stream areas [pH 6.53(6.25~6.82)] and the non-constructed areas of upper stream areas [pH 6.32(5.73~6.90)]. Mean concentration of dissolved oxygen was also similar between the constructed soil erosion control structures of lower steam areas [10.2 mg/L(9.9~10.4 mg/L)] and the non-constructed areas of upper stream areas [10.3 mg/L (9.6~10.6 mg/L)]. Mean electric conductivity was similar between the lower [$63.9{\mu}S/cm$ ($32.6{\sim}120.4{\mu}S/cm$)]a nd the upper stream areas [$62.2{\mu}S/cm$ ($40.3{\sim}89.5{\mu}S/cm$)]. Mean concentration of anions was also similar between the lower [15.94 mg/L (3.43~7.98 mg/L)] and the upper stream areas [14.51 mg/L (2.56~4.29 mg/L)]. Water pH of the Honggei valleys in Sancheong-gun was similar between the lower [pH 6.86(6.50~7.10)] and the upper stream areas [pH 6.89(6.61~7.12)]. Mean concentration of dissolved oxygen was also similar between the lower [11.9 mg/L(11.5~12.3 mg/L)] and the upper stream areas [12.2 mg/L (11.6~12.6 mg/L)]. Mean electric conductivity was similar between the lower [$633.4{\mu}S/cm$ ($31.6{\sim}34.6{\mu}S/cm$)] and the upper stream areas [$32.7{\mu}S/cm$ ($31.4{\sim}34.3{\mu}S/cm$)]. Mean concentration of anion was also similar to both stream areas [1.0 mg/L (0.1~2.2 mg/L)]. Water quality in the Uidong and the Honggei valleys was not significantly different between the constructed soil erosion control structures of lower stream areas and the non-constructed areas of upper stream areas. It will be needed to study the time-series analysis of water quality before and after the construction of soil erosion control structure the restoration of mountain streams because the water quality in mountain streams could be affected during the construction processes of structures.

이 연구는 계류에 설치되어 있는 사방공작물이 계류수질에 미치는 영향을 구명함으로써 계류복원을 위한 사방공작물의 설치방향을 정립하기 위한 기초자료를 제공하기 위하여 수행하였다. 북한산 우이동 계곡에서 사방공작물이 설치되어 있지 않은 상류지역의 평균pH는 6.32(5.73~6.90)로 사방공작물을 통과한 계류인 하류지역의 평균pH[6.53(6.25~6.82)]와 유사하였으며, 상류지역에서의 평균용존산소량은 10.3(9.6~10.6) mg/L로 사방공작물을 통과한 하류지역에서의 평균용존산소량 10.2(9.9~10.4) mg/L와 유사하였다. 평균전기전도도는 상류지역에서는 $62.2(40.3{\sim}89.5){\mu}S/cm$, 하류지역에서는 $63.9(32.6{\sim}120.4){\mu}S/cm$로 유사하였고, 평균음이온총량은 상류지역에서 4.51(2.56~4.29) mg/L, 하류지역에서 5.94(3.43~7.98) mg/L로 유사하였다. 산청군 홍계계곡에서 평균pH는 상류지점에서 6.89(6.61~7.12), 하류지점에서 6.86(6.50~7.10)으로 유사한 값을 나타내었고, 평균용존산소량은 상류지점에서 12.2(11.6~12.6) mg/L, 하류지점에서 11.9(11.5~12.3) mg/L로 유사하였다. 평균전기전도도는 상류지점에서 $32.7(31.4{\sim}34.3){\mu}S/cm$, 하류지점에서 $33.4(31.6{\sim}34.6){\mu}S/cm$로 유사하였고, 평균음이온총량은 상류와 하류지점에서 1.0(0.1~2.2) mg/L로 매우 유사한 값을 나타내었다. 북한산 우이동계곡과 산청군 홍계계곡을 대상으로 사방공작물이 설치되어 있지 않는 자연계류와 사방공작물이 설치된 하류지역에서의 계류수질을 분석한 결과 상하류간의 수질은 큰 차이가 나타나지 않았다. 사방공작물은 시공과정에서 계류수질에 영향을 미치므로 계류복원을 위하여는 각 개별 사방공작물에 대하여 시공 전후의 계류수질변화과정을 시계열적으로 심도 있게 연구할 필요가 있다.

Keywords

References

  1. Johannessen, M., Skartveit, A., and Wright, R.F. 1980. Streamwater chemistry before, during and after snowmelt. Proceeding of the International Conference on Ecology and the Impact on Acid Precipitation, Norway SNSF project.
  2. Kang, B.-W., Lee, H.-S., and Kim, H.-K. 1996. A Comparison of Acid Air Pollutants in Chongju during Summer and Winter. Journal of Korean Society of Environmental Engineers 18(9): 1-8.
  3. Kim, Joa Goan. 1995. Principle of Water Pollution. DongHwa Technical. pp. 353.
  4. Nakamura, F., Maita, H., and Araya, T. 1995. Sediment routing analysis based on chronological changes in hillslope and rivered morphologies. Earth Surface Process and Landforms 20: 333-346. https://doi.org/10.1002/esp.3290200404
  5. Oh, Y.-M. and Shin, S.-B. 1991. Water Quality Management. Singwang.
  6. Park, J.-H. and Woo, B.-M. 1997. Analysis of Influential Factors from Rainfall to Stream Water Quality in Small Forested Watershed. Journal of Korean Forest Society 86(4): 489-501.
  7. Park, J.-H. 2003. Analysis of Influences of the Soilfluction Soil and Stream flow on the Stream Water Quality of Bukhansan National Park. Journal of Korean Environmental Research and Revegitation Technology 6(2): 11-20.
  8. Park, J.-H., Ma, H.-S., Kim, K. H., and Youn, H.-J. 2011. Influences of the Construction of the Torrent Control Structure using Customized Tetrapods on the Stream Water Quality at Valley. Journal of Korean Forest Society 100(1): 105-111.
  9. Peters, N. and Leavesley, G.H. 1995. Biotic and abiotic processes controlling water chemistry during snowmelt at Rabbit Ears Pass, Rocky Mountains, USA. Water Air Soil Pollut 79: 171-190. https://doi.org/10.1007/BF01100436
  10. Soulsby, C., Chen, M., Ferrier, R.C., Helliwell, R.C., Jenkins, A., and Harriman, R. 1998. Hydrogeochemistry of shallow groundwater in an upland Scottish catchment. Hydrology Proc., in press.
  11. Whitehead, P.G., Bird, S., Hornung, M., Cosby, J., Neal, C., and Paricos, P. 1988. Stream acidfication trends in the welsh uplands a modelling study of the Llyn Brianne catchments. Journal of Hydrology 101: 191-212. https://doi.org/10.1016/0022-1694(88)90035-2
  12. Yong H.J., Won, H.K., Kim, K.H., Park, J.H., Ryu, J.H. 1997. Influences of Electrical Conductivity on Stream and Soil Water Quality in Small Forested Watershed. FRI. Journal of Forest Science 55: 125-137.

Cited by

  1. 낙동강유역 불투과형 사방댐의 계류수 및 저류수 수질 특성 분석 vol.108, pp.3, 2019, https://doi.org/10.14578/jkfs.2019.108.3.329
  2. 사방댐이 설치된 산지계곡의 장마 전·후 저서성 대형무척추동물 군집변화 vol.34, pp.2, 2013, https://doi.org/10.13047/kjee.2020.34.2.121
  3. 연속적인 사방댐이 장마 전·후 저서성 대형무척추동물 군집에 미치는 영향 비교 vol.8, pp.1, 2013, https://doi.org/10.17820/eri.2021.8.1.054