DOI QR코드

DOI QR Code

Mercury induced the Accumulation of Amyloid Beta (Aβ) in PC12 Cells: The Role of Production and Degradation of Aβ

  • Song, Ji-Won (Department of Preventive Medicine, College of Medicine, Chung-Ang University) ;
  • Choi, Byung-Sun (Department of Preventive Medicine, College of Medicine, Chung-Ang University)
  • Received : 2013.12.05
  • Accepted : 2013.12.17
  • Published : 2013.12.31

Abstract

Extracellular accumulation of amyloid beta protein ($A{\beta}$) plays a central role in Alzheimer's disease (AD). Some metals, such as copper, lead, and aluminum can affect the $A{\beta}$ accumulation in the brain. However, the effect of mercury on $A{\beta}$ accumulation in the brain is not clear. Thus, this study was proposed to estimate whether mercury concentration affects $A{\beta}$ accumulation in PC12 cells. We treated 10, 100, and 1000 nM $HgCl_2$ (Hg) or $CH_3HgCl_2$ (MeHg) for 48 hr in PC12 cells. After treatment, $A{\beta}_{40}$ in culture medium increased in a dose- and time-dependent manner. Hg and MeHg increased amyloid precursor protein (APP), which is related to $A{\beta}$ production. Neprilysin (NEP) levels in PC12 cells were decreased by Hg and MeHg treatment. These results suggested that Hg induced $A{\beta}$ accumulation through APP overproduction and reduction of NEP.

Keywords

References

  1. Goedert, M. and Spillantini, M.G. (2006) A century of Alzheimer's disease. Science, 314, 777-781. https://doi.org/10.1126/science.1132814
  2. Alzheimer's Disease International. (2010) World Alzheimer Report 2010. The global economic impact of dementia. World Alzheimer Report, 1-52.
  3. Van Den Heuvel, C., Thornton, E. and Vink, R. (2007) Traumatic brain injury and Alzheimer's disease: a review. Prog. Brain Res., 161, 303-316. https://doi.org/10.1016/S0079-6123(06)61021-2
  4. Armstrong, R.A. (2011) The pathogenesis of Alzheimer's disease: a reevaluation of the amyloid cascade hypothesis. Int. J. Alzheimers Dis., 7, 630985.
  5. Mattson, M.P. (2004) Pathways towards and away from Alzheimer's disease. Nature, 430, 631-639. https://doi.org/10.1038/nature02621
  6. Selkoe, D.J. (2001) Alzheimer's disease results from the cerebral accumulation and cytotoxicity of amyloid beta-protein. J. Alzheimers Dis., 3, 75-80. https://doi.org/10.3233/JAD-2001-3111
  7. Kounnas, M.Z., Danks, A.M., Cheng, S., Tyree, C., Ackerman, E., Zhang, X., Ahn, K., Nguyen, P., Comer, D., Mao, L., Yu, C., Pleynet, D., Digregorio, P.J., Velicelebi, G., Stauderman, K.A., Comer, W.T., Mobley, W.C., Li, Y.M., Sisodia, S.S., Tanzi, R.E. and Wagner, S.L. (2010) Modulation of gamma-secretase reduces beta-amyloid deposition in a transgenic mouse model of Alzheimer's disease. Neuron, 67, 769-780. https://doi.org/10.1016/j.neuron.2010.08.018
  8. Kayed, R., Head, E., Thompson, J.L., McIntire, T.M., Milton, S.C., Cotman, C.W. and Glabe, C.G. (2003) Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science, 300, 486-489. https://doi.org/10.1126/science.1079469
  9. Hyman, B.T. (1997) The neuropathological diagnosis of Alzheimer's disease: clinical-pathological studies. Neurobiol. Aging, 18, S27-32. https://doi.org/10.1016/S0197-4580(97)00066-3
  10. Carter, M.D., Simms, G.A. and Weaver, D.F. (2010) The development of new therapeutics for Alzheimer's disease. Clin. Pharmacol. Ther., 88, 475-486. https://doi.org/10.1038/clpt.2010.165
  11. Nagga, K., Gottfries, J., Blennow, K. and Marcusson, J. (2002) Cerebrospinal fluid phospho-tau, total tau and ${\beta}$-amyloid (1-42) in the differentiation between Alzheimer's disease and vascular dementia. Dementia Geriatr. Cognit. Disord., 14, 183-190. https://doi.org/10.1159/000066023
  12. Guan, H., Liu, Y., Daily, A., Police, S., Kim, M.H., Oddo, S., LaFerla, F.M., Pauly, J.R., Murphy, M.P. and Hersh, L.B. (2009) Peripherally expressed neprilysin reduces brain amyloid burden: A novel approach for treating Alzheimer's disease. J. Neurosci. Res., 87, 1462-1473. https://doi.org/10.1002/jnr.21944
  13. Miners, J.S., Van Helmond, Z., Chalmers, K., Wilcock, G., Love, S. and Kehoe, P.G. (2006) Decreased expression and activity of neprilysin in Alzheimer disease are associated with cerebral amyloid angiopathy. J. Neuropathol. Exp. Neurol., 65, 1012-1021. https://doi.org/10.1097/01.jnen.0000240463.87886.9a
  14. Iwata, N., Tsubuki, S., Takaki, Y., Shirotani, K., Lu, B., Gerard, N.P., Gerard, C., Hama, E., Lee, H.J. and Saido, T.C. (2001) Metabolic regulation of brain Abeta by neprilysin. Science, 292, 1550-1552. https://doi.org/10.1126/science.1059946
  15. Iwata, N., Tsubuki, S., Takaki, Y., Watanabe, K., Sekiguchi, M., Hosoki, E., Kawashima-Morishima, M., Lee, H.J., Hama, E., Sekine-Aizawa, Y. and Saido, T.C. (2000) Identification of the major Abeta1-42-degrading catabolic pathway in brain parenchyma: suppression leads to biochemical and pathological deposition. Nat. Med., 6, 143-150. https://doi.org/10.1038/72237
  16. Carl, W.C. and Christian, J.P. (1994) Alzheimer disease. Raven Press, New York, pp. 305-326.
  17. Armendariz, A.D., Gonzalez, M., Loguinov, A.V. and Vulpe, C.D. (2004) Gene expression profiling in chronic copper overload reveals upregulation of Prnp and App. Physiol. Genomics, 20, 45-54. https://doi.org/10.1152/physiolgenomics.00196.2003
  18. Lovell, M.A., Robertson, J.D., Teesdale, W.J., Campbell, J.L. and Markesbery, W.R. (1998) Copper, iron and zinc in Alzheimer's disease senile plaques. J. Neurol. Sci., 158, 47-52. https://doi.org/10.1016/S0022-510X(98)00092-6
  19. Squitti, R., Lupoi, D., Pasqualetti, P., Dal Forno, G., Vernieri, F., Chiovenda, P., Rossi, L., Cortesi, M., Cassetta, E. and Rossini, P.M. (2002) Elevation of serum copper levels in Alzheimer's disease. Neurology, 59, 1153-1161. https://doi.org/10.1212/WNL.59.8.1153
  20. Basun, H., Forssell, L.G., Wetterberg, L. and Winblad, B. (1991) Metals and trace elements in plasma and cerebrospinal fluid in normal aging and Alzheimer's disease. J. Neural Transm. Parkinson's Dis. Dementia Sect., 3, 231-258.
  21. Kim, D.K., Song, J.W., Park, J.D. and Choi, B.S. (2013) Copper induces the accumulation of amyloid-bet in the brain. Mol. Cell. Toxicol., 9, 57-66. https://doi.org/10.1007/s13273-013-0009-0
  22. Singh, I., Sagare, A.P., Coma, M., Perlmutter, D., Gelein, R., Bell, R.D., Deane, R.J., Zhong, E., Parisi, M., Ciszewski, J., Kasper, R.T. and Deane, R. (2013) Low levels of copper disrupt brain amyloid-â homeostasis by altering its production and clearance. Proc. Natl. Acad. Sci. U. S. A., 110, 14771-14776. https://doi.org/10.1073/pnas.1302212110
  23. Walton, J.R. and Wang, M.X. (2009) APP expression, distribution and accumulation are altered by aluminum in a rodent model for Alzheimer's disease. J. Inorg. Biochem., 103, 1548-1554. https://doi.org/10.1016/j.jinorgbio.2009.07.027
  24. Zawia, N.H., Lahiri, D.K. and Cardozo-Pelaez, F. (2009) Epigenetics, oxidative stress, and Alzheimer disease. Free Radical Biol. Med., 46, 1241-1249. https://doi.org/10.1016/j.freeradbiomed.2009.02.006
  25. Cheng, S.Y. and Trombetta, L.D. (2004) The induction of amyloid precursor protein and alpha-synuclein in rat hippocampal astrocytes by diethyldithiocarbamate and copper with or without glutathione. Toxicol. Lett., 146, 139-149. https://doi.org/10.1016/j.toxlet.2003.09.009
  26. Myrtd, G.J., Davidson, P.W., Cox, C., Shamlaye, C.F., Palumbo, D., Cernichiari, E., Sloane-Reeves, J., Wilding, G.E., Kost, J., Huang, L.S. and Clarkson, T.W. (2003) Prenatal methylmercury exposure from ocean fish consumption in the Seychelles child development study. Lancet, 361, 1686-1692. https://doi.org/10.1016/S0140-6736(03)13371-5
  27. Grandjean, P., Weihe, P., White, R.F., Debes, F., Araki, S., Yokoyama, K., Murata, K., Sorensen, N., Dahi, R. and Jorgensen, P.J. (1997) Cognitive deficit in 7-year-old children with prenatal exposure to methylmercury. Neurotoxicol. Teratol., 19, 417-428. https://doi.org/10.1016/S0892-0362(97)00097-4
  28. Clarkson, T.W. (1993) Mercury: major issues in environmental health. Environ. Health Perspect., 100, 31-38. https://doi.org/10.1289/ehp.9310031
  29. Leong, C.C., Syed, N.I. and Lorscheider, F.L. (2001) Retrograde degeneration of neurite membrane structural integrity of nerve growth cones following in vitro exposure to mercury. Neuroreport, 12, 733-737. https://doi.org/10.1097/00001756-200103260-00024
  30. Olivieri, G., Novakovic, M., Savaskan, E., Meier, F., Baysang, G., Brockhaus, M. and Muller-Spahn, F. (2002) The effects of beta-estradiol on SHSY5Y neuroblastoma cells during heavy metal induced oxidative stress, neurotoxicity and beta-amyloid secretion. Neuroscience, 113, 849-855. https://doi.org/10.1016/S0306-4522(02)00211-7
  31. Olivieri, G., Brack, C., Muller-Spahn, F., Stahelin, H.B., Herrmann, M., Renard, P., Brockhaus, M. and Hock, C. (2000) Mercury induces cell cytotoxicity and oxidative stress and increases beta-amyloid secretion and tau phosphorylation in SHSY5Y neuroblastoma cells. J. Neurochem., 74, 231-236.
  32. Bjorkman, L., Lundekvam, B.F., Laegreid, T., Bertelsen, B.I., Morild, I., Lilleng, P., Lind, B., Palm, B. and Vahter, M. (2007) Mercury in human brain, blood, muscle and toenails in relation to exposure: an autopsy study. Environ. Health, 6, 30-43. https://doi.org/10.1186/1476-069X-6-30
  33. Ehmann, W.D., Markesbery, W.R., Alauddin, M., Hossain, T.I. and Brubaker, E.H. (1986) Brain trace elements in Alzheimer's disease. Neurotoxicology, 7, 195-206.
  34. Lee, J.Y., Kim, J.H., Choi, D.W., Lee, D.W., Park, J.H., Yoon, H.J., Pyo, H.S., Kwon, H.J. and Park, K.S. (2012) The association of heavy metal of blood and serum in the Alzheimer's diseases. Toxicol. Res., 28, 93-98. https://doi.org/10.5487/TR.2012.28.2.093
  35. Gerhardsson, L., Lundh, T., Minthon, L. and Londos, E. (2008) Metal concentrations in plasma and cerebrospinal fluid in patients with Alzheimer's disease. Dementia Geriatr. Cognit. Disord., 25, 508-515. https://doi.org/10.1159/000129365
  36. Letz, R., Gerr, F., Cragle, D., Green, R.C., Watkins, J. and Fidler, A.T. (2000) Residual neurologic deficits 30 years after occupational exposure to elemental mercury. Neurotoxicology, 21, 459-474.
  37. Fung, Y.K., Meade, A.G., Rack, E.P., Blotcky, A.J., Claassen, J.P., Beatty, M.W. and Durham, T. (1995) Determination of blood mercury concentrations in Alzheimer's patients. J. Toxicol. Clin. Toxicol., 33, 243-247. https://doi.org/10.3109/15563659509017991
  38. Pedersen, M.B., Hansen, J.C., Mulvad, G., Pedersen, H.S., Gregersen, M. and Danscher, G. (1999) Mercury accumulations in brains from populations exposed to high and low dietary levels of methyl mercury. Concentration, chemical form and distribution of mercury in brain samples from autopsies. Int. J. Circumpolar Health, 58, 96-107.
  39. Friberg, L. and Mottet, N.K. (1989) Accumulation of methylmercury and inorganic mercury in the brain. Biol. Trace Elem. Res., 21, 201-206. https://doi.org/10.1007/BF02917253
  40. Mutter, J., Curth, A., Naumann, J., Deth, R. and Walach, H. (2010) Does inorganic mercury play a role in Alzheimer's disease? A systematic review and an integrated molecular mechanism. J. Alzheimers Dis., 22, 357-374. https://doi.org/10.3233/JAD-2010-100705
  41. Mutter, J., Naumann, J., Sadaghiani, C., Schneider, R. and Walach, H. (2004) Alzheimer disease: mercury as pathogenetic factor and apolipoprotein E as a moderator. Neuroendocrinol. Lett., 25, 331-339.
  42. Farris, W., Schutz, S.G., Cirrito, J.R., Shankar, G.M., Sun, X., George, A., Leissring, M.A., Walsh, D.M., Qiu, W.Q., Holtzman, D.M. and Selkoe, D.J. (2007) Loss of neprilysin function promotes amyloid plaque formation and causes cerebral amyloid angiopathy. Am. J. Pathol., 171, 241-251. https://doi.org/10.2353/ajpath.2007.070105
  43. Li, Y.Y., Chen, T., Wan, Y. and Xu S.Q. (2012) Lead exposure in pheochromocytoma cells induces persistent changes in amyloid precursor protein gene methylation patterns. Environ. Toxicol., 27, 495-502. https://doi.org/10.1002/tox.20666
  44. Huang, H., Bihaqi, S.W., Cui, L. and Zawia, N.H. (2011) In vitro Pb exposure disturbs the balance between A${\beta}$ production and elimination: the role of A${\beta}$PP and neprilysin. Neurotoxicology, 32, 300-306. https://doi.org/10.1016/j.neuro.2011.02.001
  45. Basha, M.R., Wei, W., Bakheet, S.A., Benitez, N., Siddiqi, H.K., Ge, Y.W., Lahiri, D.K. and Zawia, N.H. (2005) The fetal basis of amyloidogenesis: exposure to lead and latent overexpression of amyloid precursor protein and beta-amyloid in the aging brain. J. Neurosci., 25, 823-829. https://doi.org/10.1523/JNEUROSCI.4335-04.2005
  46. Lin, R., Chen, X., Li, W., Han, Y., Liu, P. and Pi, R. (2008) Exposure to metal ions regulates mRNA levels of APP and BACE1 in PC12 cells: blockage by curcumin. Neurosci. Lett., 440, 344-347. https://doi.org/10.1016/j.neulet.2008.05.070

Cited by

  1. NRF2 Signaling Negatively Regulates Phorbol-12-Myristate-13-Acetate (PMA)-Induced Differentiation of Human Monocytic U937 Cells into Pro-Inflammatory Macrophages vol.10, pp.7, 2015, https://doi.org/10.1371/journal.pone.0134235
  2. Amyloid β: one of three danger-associated molecules that are secondary inducers of the proinflammatory cytokines that mediate Alzheimer's disease vol.172, pp.15, 2015, https://doi.org/10.1111/bph.13181
  3. Biometal Dyshomeostasis and Toxic Metal Accumulations in the Development of Alzheimer’s Disease vol.10, pp.1662-5099, 2017, https://doi.org/10.3389/fnmol.2017.00339
  4. Biomarkers for detection, prognosis and therapeutic assessment of neurological disorders vol.29, pp.7, 2018, https://doi.org/10.1515/revneuro-2017-0097
  5. Concentration-dependent effects of mercury and lead on Aβ42: possible implications for Alzheimer’s disease vol.48, pp.2, 2019, https://doi.org/10.1007/s00249-018-1344-9
  6. Epigenetic and Neurological Impairments Associated with Early Life Exposure to Persistent Organic Pollutants vol.2019, pp.2314-4378, 2019, https://doi.org/10.1155/2019/2085496