DOI QR코드

DOI QR Code

Anti-cancer Effect and Underlying Mechanism(s) of Kaempferol, a Phytoestrogen, on the Regulation of Apoptosis in Diverse Cancer Cell Models

  • Kim, Seung-Hee (Laboratory of Veterinary Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University) ;
  • Choi, Kyung-Chul (Laboratory of Veterinary Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University)
  • Received : 2013.12.06
  • Accepted : 2013.12.12
  • Published : 2013.12.31

Abstract

Phytoestrogens exist in edible compounds commonly found in fruits or plants. For long times, phytoestrogens have been used for therapeutic treatments against human diseases, and they can be promising ingredients for future pharmacological industries. Kaempferol is a yellow compound found in grapes, broccoli and yellow fruits, which is one of flavonoid as phytoestrogens. Kaempferol has been suggested to have an antioxidant and anti-inflammatory effect. In past decades, many studies have been performed to examine anti-toxicological role(s) of kaempferol against human cancers. It has been shown that kaempferol may be involved in the regulations of cell cycle, metastasis, angiogenesis and apoptosis in various cancer cell types. Among them, there have been a few of the studies to examine a relationship between kaempferol and apoptosis. Thus, in this review, we highlight the effect(s) of kaempferol on the regulation of apoptosis in diverse cancer cell models. This could be a forecast in regard to use of kaempferol as promising treatment against human diseases.

Keywords

References

  1. Danial, N.N. and Korsmeyer, S.J. (2004) Cell death: critical control points. Cell, 116, 205-219. https://doi.org/10.1016/S0092-8674(04)00046-7
  2. Kastan, M.B. and Bartek, J. (2004) Cell-cycle checkpoints and cancer. Nature, 432, 316-323. https://doi.org/10.1038/nature03097
  3. Prehn, R.T. (1976) Tumor progression and homeostasis. Adv. Cancer Res., 23, 203-236. https://doi.org/10.1016/S0065-230X(08)60547-3
  4. Branca, F. and Lorenzetti, S. (2005) Health effects of phytoestrogens. Forum Nutr., 100-111.
  5. Dixon, R.A. (2004) Phytoestrogens. Annu. Rev. Plant Biol., 55, 225-261. https://doi.org/10.1146/annurev.arplant.55.031903.141729
  6. Poluzzi, E., Piccinni, C., Raschi, E., Rampa, A., Recanatini, M. and De Ponti, F. (2013) Phytoestrogens in postmenopause: the state of the art from a chemical, pharmacological and regulatory perspective. Curr. Med. Chem. In press.
  7. Tham, D.M., Gardner, C.D. and Haskell, W.L. (1998) Clinical review 97: Potential health benefits of dietary phytoestrogens: a review of the clinical, epidemiological, and mechanistic evidence. J. Clin. Endocrinol. Metab., 83, 2223-2235.
  8. Adlercreutz, H., Mousavi, Y., Clark, J., Hockerstedt, K., Hamlainen, E., Wahala, K., Makela, T. and Hase, T. (1992) Dietary phytoestrogens and cancer: in vitro and in vivo studies. J. Steroid Biochem. Mol. Biol., 41, 331-337. https://doi.org/10.1016/0960-0760(92)90359-Q
  9. Hwang, K.A., Kang, N.H., Yi, B.R., Lee, H.R., Park, M.A. and Choi, K.C. (2013) Genistein, a soy phytoestrogen, prevents the growth of BG-1 ovarian cancer cells induced by 17beta-estradiol or bisphenol A via the inhibition of cell cycle progression. Int. J. Oncol., 42, 733-740. https://doi.org/10.3892/ijo.2012.1719
  10. Hwang, K.A., Park, M.A., Kang, N.H., Yi, B.R., Hyun, S.H., Jeung, E.B. and Choi, K.C. (2013) Anticancer effect of genistein on BG-1 ovarian cancer growth induced by 17 beta-estradiol or bisphenol A via the suppression of the crosstalk between estrogen receptor alpha and insulin-like growth factor-1 receptor signaling pathways. Toxicol. Appl. Pharmacol., 272, 637-646. https://doi.org/10.1016/j.taap.2013.07.027
  11. Rice-Evans, C. (2001) Flavonoid antioxidants. Curr. Med. Chem., 8, 797-807. https://doi.org/10.2174/0929867013373011
  12. Kim, S., Kim, K.Y., Han, C.S., Ki, K.S., Min, K.J., Zhang, X. and Whang, W.K. (2012) Simultaneous analysis of six major compounds in Osterici Radix and Notopterygii Rhizoma et Radix by HPLC and discrimination of their origins from chemical fingerprint analysis. Arch. Pharmacal Res., 35, 691-699. https://doi.org/10.1007/s12272-012-0413-3
  13. Park, J.S., Rho, H.S., Kim, D.H. and Chang, I.S. (2006) Enzymatic preparation of kaempferol from green tea seed and its antioxidant activity. J. Agric. Food Chem., 54, 2951-2956. https://doi.org/10.1021/jf052900a
  14. Yoshikawa, T., Naito, Y. and Kondo, M. (1999) Ginkgo biloba leaf extract: review of biological actions and clinical applications. Antioxid. Redox Signaling, 1, 469-480. https://doi.org/10.1089/ars.1999.1.4-469
  15. Kowalski, J., Samojedny, A., Paul, M., Pietsz, G. and Wilczok, T. (2005) Effect of apigenin, kaempferol and resveratrol on the expression of interleukin-1beta and tumor necrosis factor-alpha genes in J774.2 macrophages. Pharmacol. Rep., 57, 390-394.
  16. Li, R.J., Mei, J.Z. and Liu, G.J. (2011) [Kaempferol-induced apoptosis of human esophageal squamous carcinoma Eca-109 cells and the mechanism]. Nanfang Yike Daxue Xuebao, 31, 1440-1442.
  17. Marfe, G., Tafani, M., Indelicato, M., Sinibaldi-Salimei, P., Reali, V., Pucci, B., Fini, M. and Russo, M.A. (2009) Kaempferol induces apoptosis in two different cell lines via Akt inactivation, Bax and SIRT3 activation, and mitochondrial dysfunction. J. Cell. Biochem., 106, 643-650. https://doi.org/10.1002/jcb.22044
  18. Xie, F., Su, M., Qiu, W., Zhang, M., Guo, Z., Su, B., Liu, J., Li, X. and Zhou, L. (2013) Kaempferol promotes apoptosis in human bladder cancer cells by inducing the tumor suppressor, PTEN. Int. J. Mol. Sci., 14, 21215-21226. https://doi.org/10.3390/ijms141121215
  19. Bennetts, H.W., Underwood, E.J. and Shier, F.L. (1946) A specific breeding problem of sheep on subterranean clover pastures in Western Australia. Aust. Vet. J., 22, 2-12. https://doi.org/10.1111/j.1751-0813.1946.tb15473.x
  20. Adlercreutz, H. (1990) Western diet and Western diseases: some hormonal and biochemical mechanisms and associations. Scand. J. Clin. Lab. Invest. Suppl., 201, 3-23.
  21. Murkies, A.L., Lombard, C., Strauss, B.J., Wilcox, G., Burger, H.G. and Morton, M.S. (1995) Dietary flour supplementation decreases post-menopausal hot flushes: effect of soy and wheat. Maturitas, 21, 189-195. https://doi.org/10.1016/0378-5122(95)00899-V
  22. Simons, L.A., von Konigsmark, M., Simons, J. and Celermajer, D.S. (2000) Phytoestrogens do not influence lipoprotein levels or endothelial function in healthy, postmenopausal women. Am. J. Cardiol., 85, 1297-1301. https://doi.org/10.1016/S0002-9149(00)00759-1
  23. Atkinson, C., Compston, J.E., Day, N.E., Dowsett, M. and Bingham, S.A. (2004) The effects of phytoestrogen isoflavones on bone density in women: a double-blind, randomized, placebo-controlled trial. Am. J. Clin. Nutr., 79, 326-333. https://doi.org/10.1093/ajcn/79.2.326
  24. Wang, C. and Kurzer, M.S. (1997) Phytoestrogen concentration determines effects on DNA synthesis in human breast cancer cells. Nutr. Cancer, 28, 236-247. https://doi.org/10.1080/01635589709514582
  25. Oh, S.M., Kim, Y.P. and Chung, K.H. (2006) Biphasic effects of kaempferol on the estrogenicity in human breast cancer cells. Arch. Pharmacal Res., 29, 354-362. https://doi.org/10.1007/BF02968584
  26. Kuiper, G.G., Lemmen, J.G., Carlsson, B., Corton, J.C., Safe, S.H., van der Saag, P.T., van der Burg, B. and Gustafsson, J.A. (1998) Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor beta. Endocrinology, 139, 4252-4263. https://doi.org/10.1210/endo.139.10.6216
  27. Kao, Y.C., Zhou, C., Sherman, M., Laughton, C.A. and Chen, S. (1998) Molecular basis of the inhibition of human aromatase (estrogen synthetase) by flavone and isoflavone phytoestrogens: A site-directed mutagenesis study. Environ. Health Perspect., 106, 85-92. https://doi.org/10.1289/ehp.98106s185
  28. Kang, N.H., Hwang, K.A., Lee, H.R., Choi, D.W. and Choi, K.C. (2013) Resveratrol regulates the cell viability promoted by 17beta-estradiol or bisphenol A via down-regulation of the cross-talk between estrogen receptor alpha and insulin growth factor-1 receptor in BG-1 ovarian cancer cells. Food Chem. Toxicol., 59, 373-379. https://doi.org/10.1016/j.fct.2013.06.029
  29. Murkies, A.L., Wilcox, G. and Davis, S.R. (1998) Clinical review 92: Phytoestrogens. J. Clin. Endocrinol. Metab., 83, 297-303.
  30. Choi, E.J. and Ahn, W.S. (2008) Kaempferol induced the apoptosis via cell cycle arrest in human breast cancer MDA-MB-453 cells. Nutr. Res. Pract., 2, 322-325. https://doi.org/10.4162/nrp.2008.2.4.322
  31. Havsteen, B.H. (2002) The biochemistry and medical significance of the flavonoids. Pharmacol. Ther., 96, 67-202. https://doi.org/10.1016/S0163-7258(02)00298-X
  32. Touillaud, M.S., Pillow, P.C., Jakovljevic, J., Bondy, M.L., Singletary, S.E., Li, D. and Chang, S. (2005) Effect of dietary intake of phytoestrogens on estrogen receptor status in premenopausal women with breast cancer. Nutr. Cancer, 51, 162-169. https://doi.org/10.1207/s15327914nc5102_6
  33. Luo, H., Rankin, G.O., Liu, L., Daddysman, M.K., Jiang, B.H. and Chen, Y.C. (2009) Kaempferol inhibits angiogenesis and VEGF expression through both HIF dependent and independent pathways in human ovarian cancer cells. Nutr. Cancer, 61, 554-563. https://doi.org/10.1080/01635580802666281
  34. Luo, H., Rankin, G.O., Juliano, N., Jiang, B.H. and Chen, Y.C. (2012) Kaempferol inhibits VEGF expression and in vitro angiogenesis through a novel ERK-NFkappaB-cMyc-p21 pathway. Food Chem., 130, 321-328. https://doi.org/10.1016/j.foodchem.2011.07.045
  35. Vogelstein, B. and Kinzler, K.W. (2004) Cancer genes and the pathways they control. Nat. Med., 10, 789-799. https://doi.org/10.1038/nm1087
  36. Kang, G.Y., Lee, E.R., Kim, J.H., Jung, J.W., Lim, J., Kim, S.K., Cho, S.G. and Kim, K.P. (2009) Downregulation of PLK-1 expression in kaempferol-induced apoptosis of MCF-7 cells. Eur. J. Pharmacol., 611, 17-21. https://doi.org/10.1016/j.ejphar.2009.03.068
  37. Xu, W., Liu, J., Li, C., Wu, H.Z. and Liu, Y.W. (2008) Kaempferol-7-O-beta-D-glucoside (KG) isolated from Smilax china L. rhizome induces G2/M phase arrest and apoptosis on HeLa cells in a p53-independent manner. Cancer Lett., 264, 229-240. https://doi.org/10.1016/j.canlet.2008.01.044
  38. Chen, H.J., Lin, C.M., Lee, C.Y., Shih, N.C., Peng, S.F., Tsuzuki, M., Amagaya, S., Huang, W.W. and Yang, J.S. (2013) Kaempferol suppresses cell metastasis via inhibition of the ERK-p38-JNK and AP-1 signaling pathways in U-2 OS human osteosarcoma cells. Oncol. Rep., 30, 925-932. https://doi.org/10.3892/or.2013.2490
  39. Martina, M., Clerici, M., Baldo, V., Bonetti, D., Lucchini, G. and Longhese, M.P. (2012) A balance between Tel1 and Rif2 activities regulates nucleolytic processing and elongation at telomeres. Mol. Cell Biol., 32, 1604-1617. https://doi.org/10.1128/MCB.06547-11
  40. Majno, G. and Joris, I. (1995) Apoptosis, oncosis, and necrosis. An overview of cell death. Am. J. Pathol., 146, 3-15.
  41. Edinger, A.L. and Thompson, C.B. (2004) Death by design: apoptosis, necrosis and autophagy. Curr. Opin. Cell Biol., 16, 663-669. https://doi.org/10.1016/j.ceb.2004.09.011
  42. Fadok, V.A., Voelker, D.R., Campbell, P.A., Cohen, J.J., Bratton, D.L. and Henson, P.M. (1992) Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. J. Immunol., 148, 2207-2216.
  43. Kerr, J.F. (1971) Shrinkage necrosis: a distinct mode of cellular death. J. Pathol., 105, 13-20. https://doi.org/10.1002/path.1711050103
  44. Kerr, J.F., Winterford, C.M. and Harmon, B.V. (1994) Apoptosis. Its significance in cancer and cancer therapy. Cancer, 73, 2013-2026. https://doi.org/10.1002/1097-0142(19940415)73:8<2013::AID-CNCR2820730802>3.0.CO;2-J
  45. Kerr, J.F., Wyllie, A.H. and Currie, A.R. (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer, 26, 239-257. https://doi.org/10.1038/bjc.1972.33
  46. Singh, N.P. (2000) A simple method for accurate estimation of apoptotic cells. Exp. Cell Res., 256, 328-337. https://doi.org/10.1006/excr.2000.4810
  47. Kelly, K.J., Sandoval, R.M., Dunn, K.W., Molitoris, B.A. and Dagher, P.C. (2003) A novel method to determine specificity and sensitivity of the TUNEL reaction in the quantitation of apoptosis. Am. J. Physiol. Cell Physiol., 284, C1309-1318. https://doi.org/10.1152/ajpcell.00353.2002
  48. Riccardi, C. and Nicoletti, I. (2006) Analysis of apoptosis by propidium iodide staining and flow cytometry. Nat. Protoc., 1, 1458-1461. https://doi.org/10.1038/nprot.2006.238
  49. Loo, D.T. and Rillema, J.R. (1998) Measurement of cell death. Methods Cell Biol., 57, 251-264. https://doi.org/10.1016/S0091-679X(08)61583-6
  50. Thorburn, A. (2004) Death receptor-induced cell killing. Cell. Signalling, 16, 139-144. https://doi.org/10.1016/j.cellsig.2003.08.007
  51. Kim, H.K., Park, H.R., Lee, J.S., Chung, T.S., Chung, H.Y. and Chung, J. (2007) Down-regulation of iNOS and TNF-alpha expression by kaempferol via NF-kappaB inactivation in aged rat gingival tissues. Biogerontology, 8, 399-408. https://doi.org/10.1007/s10522-007-9083-9
  52. Pang, J.L., Ricupero, D.A., Huang, S., Fatma, N., Singh, D.P., Romero, J.R. and Chattopadhyay, N. (2006) Differential activity of kaempferol and quercetin in attenuating tumor necrosis factor receptor family signaling in bone cells. Biochem. Pharmacol., 71, 818-826. https://doi.org/10.1016/j.bcp.2005.12.023
  53. Jin, Z., McDonald, E.R. 3rd, Dicker, D.T. and El-Deiry, W.S. (2004) Deficient tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) death receptor transport to the cell surface in human colon cancer cells selected for resistance to TRAIL-induced apoptosis. J. Biol. Chem., 279, 35829-35839. https://doi.org/10.1074/jbc.M405538200
  54. Yoshida, T., Konishi, M., Horinaka, M., Yasuda, T., Goda, A.E., Taniguchi, H., Yano, K., Wakada, M. and Sakai, T. (2008) Kaempferol sensitizes colon cancer cells to TRAIL-induced apoptosis. Biochem. Biophys. Res. Commun., 375, 129-133. https://doi.org/10.1016/j.bbrc.2008.07.131
  55. Siegelin, M.D., Reuss, D.E., Habel, A., Herold-Mende, C. and von Deimling, A. (2008) The flavonoid kaempferol sensitizes human glioma cells to TRAIL-mediated apoptosis by proteasomal degradation of survivin. Mol. Cancer Ther., 7, 3566-3574. https://doi.org/10.1158/1535-7163.MCT-08-0236
  56. Deribe, Y.L., Pawson, T. and Dikic, I. (2010) Post-translational modifications in signal integration. Nat. Struct. Mol. Biol., 17, 666-672. https://doi.org/10.1038/nsmb.1842
  57. Alenzi, F.Q., Lotfy, M. and Wyse, R. (2010) Swords of cell death: caspase activation and regulation. Asian Pac. J. Cancer Prev., 11, 271-280.
  58. Bestwick, C.S., Milne, L. and Duthie, S.J. (2007) Kaempferol induced inhibition of HL-60 cell growth results from a heterogeneous response, dominated by cell cycle alterations. Chem. Biol. Interact., 170, 76-85. https://doi.org/10.1016/j.cbi.2007.07.002
  59. Engel, T. and Henshall, D.C. (2009) Apoptosis, Bcl-2 family proteins and caspases: the ABCs of seizure-damage and epileptogenesis? Int. J. Physiol. Pathophysiol. Pharmacol., 1, 97-115.
  60. Indran, I.R., Tufo, G., Pervaiz, S. and Brenner, C. (2011) Recent advances in apoptosis, mitochondria and drug resistance in cancer cells. Biochim. Biophys. Acta, 1807, 735-745. https://doi.org/10.1016/j.bbabio.2011.03.010
  61. Nguyen, T.T., Tran, E., Ong, C.K., Lee, S.K., Do, P.T., Huynh, T.T., Nguyen, T.H., Lee, J.J., Tan, Y., Ong, C.S. and Huynh, H. (2003) Kaempferol-induced growth inhibition and apoptosis in A549 lung cancer cells is mediated by activation of MEK-MAPK. J. Cell. Physiol., 197, 110-121. https://doi.org/10.1002/jcp.10340
  62. Kim, Y.M., Talanian, R.V. and Billiar, T.R. (1997) Nitric oxide inhibits apoptosis by preventing increases in caspase-3-like activity via two distinct mechanisms. J. Biol. Chem., 272, 31138-31148. https://doi.org/10.1074/jbc.272.49.31138
  63. Cooper, C.E. (2002) Nitric oxide and cytochrome oxidase: substrate, inhibitor or effector? Trends Biochem. Sci., 27, 33-39. https://doi.org/10.1016/S0968-0004(01)02035-7
  64. Cook, J.A., Gius, D., Wink, D.A., Krishna, M.C., Russo, A. and Mitchell, J.B. (2004) Oxidative stress, redox, and the tumor microenvironment. Semin. Radiat. Oncol., 14, 259-266.
  65. Reade, M.C., Millo, J.L., Young, J.D. and Boyd, C.A. (2005) Nitric oxide synthase is downregulated, while haem oxygenase is increased, in patients with septic shock. Br. J. Anaesth., 94, 468-473. https://doi.org/10.1093/bja/aei082
  66. Garcia-Mediavilla, V., Crespo, I., Collado, P.S., Esteller, A., Sanchez-Campos, S., Tunon, M.J. and Gonzalez-Gallego, J. (2007) The anti-inflammatory flavones quercetin and kaempferol cause inhibition of inducible nitric oxide synthase, cyclooxygenase-2 and reactive C-protein, and down-regulation of the nuclear factor kappaB pathway in Chang Liver cells. Eur. J. Pharmacol., 557, 221-229. https://doi.org/10.1016/j.ejphar.2006.11.014
  67. Jiang, S., Cheng, R., Wang, X., Xue, T., Liu, Y., Nel, A., Huang, Y. and Duan, X. (2013) Real-time electrical detection of nitric oxide in biological systems with sub-nanomolar sensitivity. Nat. Commun., 4, 2225.
  68. Rostoka, E., Baumane, L., Isajevs, S., Line, A., Dzintare, M., Svirina, D., Sharipova, J., Silina, K., Kalvinsh, I. and Sjakste, N. (2010) Effects of kaempferol and myricetin on inducible nitric oxide synthase expression and nitric oxide production in rats. Basic Clin. Pharmacol. Toxicol., 106, 461-466. https://doi.org/10.1111/j.1742-7843.2009.00526.x
  69. Boberg, J., Mandrup, K.R., Jacobsen, P.R., Isling, L.K., Hadrup, N., Berthelsen, L., Elleby, A., Kiersgaard, M., Vinggaard, A.M., Hass, U. and Nellemann, C. (2013) Endocrine disrupting effects in rats perinatally exposed to a dietary relevant mixture of phytoestrogens. Reprod. Toxicol., 40, 41-51. https://doi.org/10.1016/j.reprotox.2013.05.014

Cited by

  1. Efficacy of flavonoids in the management of high blood pressure vol.73, pp.12, 2015, https://doi.org/10.1093/nutrit/nuv048
  2. A novel colchicine-based microtubule inhibitor exhibits potent antitumor activity by inducing mitochondrial mediated apoptosis in MIA PaCa-2 pancreatic cancer cells vol.37, pp.10, 2016, https://doi.org/10.1007/s13277-016-5160-5
  3. ) Fruit Peel through Oxidative Stress and Analysis of its Phytochemical Constituents vol.41, pp.1, 2016, https://doi.org/10.1111/jfbc.12294
  4. Flavonoids: an overview vol.5, pp.2048-6790, 2016, https://doi.org/10.1017/jns.2016.41
  5. Pharmacological potential of Bidens pilosa L. and determination of bioactive compounds using UHPLC-QqQLIT-MS/MS and GC/MS vol.17, pp.1, 2017, https://doi.org/10.1186/s12906-017-2000-0
  6. Therapeutic potential of flavonoids in inflammatory bowel disease: A comprehensive review vol.23, pp.28, 2017, https://doi.org/10.3748/wjg.v23.i28.5097
  7. Emerging Importance of Phytochemicals in Regulation of Stem Cells Fate via Signaling Pathways vol.31, pp.11, 2017, https://doi.org/10.1002/ptr.5908
  8. Effective cytotoxic activity of OSW-1 on colon cancer by inducing apoptosis in vitro and in vivo vol.37, pp.6, 2017, https://doi.org/10.3892/or.2017.5582
  9. Kaempferol inhibited VEGF and PGF expression and in vitro angiogenesis of HRECs under diabetic-like environment vol.50, pp.3, 2017, https://doi.org/10.1590/1414-431x20165396
  10. Insights into the functionality of endophytic actinobacteria with a focus on their biosynthetic potential and secondary metabolites production vol.7, pp.1, 2017, https://doi.org/10.1038/s41598-017-12235-4
  11. Kaempferol increases apoptosis in human acute promyelocytic leukemia cells and inhibits multidrug resistance genes pp.07302312, 2017, https://doi.org/10.1002/jcb.26391
  12. Phytochemical based nanomedicines against cancer: current status and future prospects pp.1029-2330, 2017, https://doi.org/10.1080/1061186X.2017.1408115
  13. Esculetin induces apoptosis in human colon cancer cells by inducing endoplasmic reticulum stress vol.33, pp.7, 2015, https://doi.org/10.1002/cbf.3146
  14. Phytoestrogens and Mycoestrogens Induce Signature Structure Dynamics Changes on Estrogen Receptor α vol.13, pp.9, 2016, https://doi.org/10.3390/ijerph13090869
  15. Chemopreventive effect of sulindac in combination with epigallocatechin gallate or kaempferol against 1,2-dimethyl hydrazine-induced preneoplastic lesions in rats: A Comparative Study vol.32, pp.10, 2018, https://doi.org/10.1002/jbt.22198
  16. Phenolic Compounds and Bioactivity of Cytisus villosus Pourr. vol.23, pp.8, 2018, https://doi.org/10.3390/molecules23081994
  17. Phyto-polyphenols as potential inhibitors of breast cancer metastasis vol.24, pp.1, 2018, https://doi.org/10.1186/s10020-018-0032-7
  18. dendritic cell infiltration vol.40, pp.3, 2018, https://doi.org/10.1080/08923973.2018.1434794
  19. Cell suspension culture as a means to produce polyphenols from date palm (Phoenix dactylifera L.) vol.42, pp.5, 2018, https://doi.org/10.1590/1413-70542018425021118
  20. Extracts from Sageretia thea reduce cell viability through inducing cyclin D1 proteasomal degradation and HO-1 expression in human colorectal cancer cells vol.19, pp.1, 2019, https://doi.org/10.1186/s12906-019-2453-4