DOI QR코드

DOI QR Code

Enhanced nucleation density by heat treatment of nanodiamond seed particles

나노다이아몬드 seed 입자의 열처리에 의한 핵형성 밀도 향상

  • Park, Jong Cheon (Department of Nano Fusion Technology, Pusan National University) ;
  • Jeong, Ok Geun (Department of Nano Fusion Technology, Pusan National University) ;
  • Son, Bit Na (Department of Nanomechatronics Engineering, Pusan National University) ;
  • Cho, Hyun (Department of Nanomechatronics Engineering, Pusan National University)
  • 박종천 (부산대학교 나노융합기술학과) ;
  • 정옥근 (부산대학교 나노융합기술학과) ;
  • 손빛나 (부산대학교 나노메카트로닉스공학과) ;
  • 조현 (부산대학교 나노메카트로닉스공학과)
  • Received : 2013.10.11
  • Accepted : 2013.11.15
  • Published : 2013.12.31

Abstract

Surface chemical modification via air and hydrogen heat treatment was found to relieve the aggregation of nanodiamond (ND) seed particles and lead to a significantly enhanced nucleation density for ultrananocrystalline diamond (UNCD) film growth. After heat treatment in air and hydrogen, modification of surface functionalities and increase in the zeta potential were observed. Mean size of the ND aggregates was also dramatically reduced from ${\sim}2{\mu}m$ to ~55 nm. Si surface seeded with ND particles heat-treated at $600^{\circ}C$ in hydrogen produced a much higher nucleation density of ${\sim}2.7{\times}10^{11}cm^{-2}$ compared to untreated ND seeds.

산화 및 수소 분위기 열처리를 통한 화학적 표면 개질로 나노다이아몬드 seed 입자의 응집성 완화 및 초미세나노결정질 다이아몬드 (UNCD) 박막 증착을 위한 핵형성 밀도 향상을 확보하였다. 열처리에 의해 나노다이아몬드 seed 입자표면 작용기가 개질되었고, 제타 전위도 증가하였다. 또한, 응집체 평균 크기가 약 $2{\mu}m$에서 ~55 nm로 크게 감소하였다. $600^{\circ}C$, 수소 열처리된 seed 입자로 seeding 한 Si 기판으로부터 열처리하지 않은 seed 입자에 비해 현저하게 향상된 ${\sim}2.7{\times}10^{11}cm^{-2}$의 매우 높은 핵형성 밀도를 확보하였다.

Keywords

References

  1. J. Hees, N. Heidrich, W. Pletschen, R.E. Sah, M. Wolfer, O.A. Williams, V. Lebedev, C.E. Nebel and O. Ambacher, "Piezoelectric actuated micro-resonators based on the growth of diamond on aluminum nitride thin films", Nanotechnology 24 (2013) 025601. https://doi.org/10.1088/0957-4484/24/2/025601
  2. N. Moldovan, O. Auciello, A.V. Sumant, J.A. Carlisle, R. Divan, D.M. Gruen, A.R. Krauss, D.C. Mancini, A. Jayatissa and J. Tucek, "Micromachining of ultrananocrystalline diamond", Proc. SPIE. 4557 (2001) 288.
  3. M.W. Geis, N.N. Efremow, K.E. Krohn, J.C. Twichell, T.M. Lyszczarz, R. Kalish, J.A. Greer and M.D. Tabat, "A new surface electron-emission mechanism in diamond cathode", Nature 393 (1998) 431. https://doi.org/10.1038/30900
  4. J. Cvacka, V. Quaiserova, J.W. Park, Y. Show, A. Muck, Jr. and G.M. Swain, "Boron-doped diamond microelectrodes for use in capillary electrophoresis with electrochemical detection", Anal. Chem. 75 (2003) 2678. https://doi.org/10.1021/ac030024z
  5. O. Auciello, A.V. Sumant, "Status review of the science and technology of ultrananocrystalline diamond (UNCD) films and application to multifunctional devices", Diamond Relat. Mater. 19 (2010) 699. https://doi.org/10.1016/j.diamond.2010.03.015
  6. O.A. Williams, "Nanocrystalline diamond", Diamond Relat. Mater. 20 (2011) 621. https://doi.org/10.1016/j.diamond.2011.02.015
  7. J.C. Park, O.G. Jeong, S.Y. Kim, S.J. Park, Y-.H. Yun and Hyun Cho, "Silicon surface texturing for enhanced nanocrystalline diamond seeding efficiency", J. Korean Cryst. Growth Cryst. Technol. 23 (2013) 86. https://doi.org/10.6111/JKCGCT.2013.23.2.86
  8. T.G. Kim, Y.H. Shin, H. Cho and J.K. Kim, "Synthesis of transparent diamond-like carbon film on the glass by radio-frequency plasma enhanced chemical vapor deposition", J. Korean Cryst. Growth Cryst. Technol. 22 (2012) 190. https://doi.org/10.6111/JKCGCT.2012.22.4.190
  9. V.Y. Dolmatov, "Detonation synthesis ultradispersed diamonds properties and applications", Russ. Chem. Rev. 70 (2008) 607.
  10. K.V. Volkov, V.V. Danilenko and V.I. Elin, "Synthesis of diamond from the carbon in the detonation products of explosives", Fiz. Goreniya Vzryva 26 (1990) 123.
  11. E. Osawa, in: A.V.D. Gruen, O. Shenderova (eds.), Synthesis, Properties and Applications of Ultrananocrystalline Diamond p. 231-240 (Springer, 2005).
  12. A. Krueger, "The structure and reactivity of nanoscale diamond", J. Mater. Chem. 18 (2008) 1485. https://doi.org/10.1039/b716673g
  13. M. Ozawa, M. Inaguma, M. Takahashi, F. Kataoka, K. Krueger and E. Osawa, "Preparation and behavior of brownish, clear nanodiamond colloids", Adv. Mater. 19 (2007) 1201. https://doi.org/10.1002/adma.200601452
  14. A. Krueger, M. Ozawa, G. Jarre, Y. Liang, J. Stegk and L. Lu, "Deagglomeration and functionalisation of detonation diamond", Phys. Status Solidi A 204 (2007) 2881. https://doi.org/10.1002/pssa.200776330
  15. Y. Liu, Z. Gu, J.L. Margrave and V.N. Khabashesku, "Functionalization of nanoscale diamond powder:fluoro-, alkyl-, amino-, and amino acid-nanodiamond derivatives", Chem. Mater. 16 (2004) 3924. https://doi.org/10.1021/cm048875q
  16. Q. Yu, Y.J. Kim and H. Ma, "Plasma treatment of diamond nanoparticles for dispersion improvement in water", Appl. Phys. Lett. 88 (2006) 231503. https://doi.org/10.1063/1.2208279
  17. J.C. Arnault, T. Petit, H. Girard, A. Chavanne, C. Gesset, M. Sennour and M. Chaigneau, "Surface chemical modifications and surface reactivity of nanodiamonds hydrogenated by CVD plasma", Phys. Chem. Chem. Phys. 13 (2011) 11481. https://doi.org/10.1039/c1cp20109c
  18. H.P. Boehm, "Surface oxides on carbon and their analysis: a critical assessment", Carbon 40 (2002) 145. https://doi.org/10.1016/S0008-6223(01)00165-8
  19. O.A. Williams, J. Hees, C. Dieker, W. Jager, L. Kirste and C.E. Nebel, "Size-dependent reactivity of diamond nanoparticles", ACS Nano 4 (2010) 4824. https://doi.org/10.1021/nn100748k
  20. C. Leon, J.M. Solar, V. Calemma and L.R. Radovic, "Evidence for the protonation of basal plane sites on carbon", Carbon 30 (1992) 797. https://doi.org/10.1016/0008-6223(92)90164-R