DOI QR코드

DOI QR Code

Selective Chemical Wet Etching of Si0.8Ge0.2/Si Multilayer

  • Kil, Yeon-Ho (Semiconductor Physics Research Center, Chonbuk National University) ;
  • Yang, Jong-Han (Semiconductor Physics Research Center, Chonbuk National University) ;
  • Kang, Sukil (Semiconductor Physics Research Center, Chonbuk National University) ;
  • Jeong, Tae Soo (Semiconductor Physics Research Center, Chonbuk National University) ;
  • Kim, Taek Sung (Semiconductor Physics Research Center, Chonbuk National University) ;
  • Shim, Kyu-Hwan (Semiconductor Physics Research Center, Chonbuk National University)
  • Received : 2013.06.03
  • Accepted : 2013.10.01
  • Published : 2013.12.31

Abstract

We investigate the effect of the ageing time and etching time on the etching rate of SiGe mixed etching solution, namely 1 vp HF (6%), 2 vp $H_2O_2$ (30%) and 3 vp $CH_3COOH$ (99.8%). For this etching solution, we found that the etch rate of SiGe layer is saturated after the ageing time of 72 hours, and the selectivity of $Si_{0.8}Ge_{0.2}$ layer and Si layer is 20:1 at ageing time of 72 hours. The collapse was appeared at the etching time of 9min with etching solution of after saturation ageing time.

Keywords

References

  1. T. Skotnicki, Microelectronic Engineering, 84 (2007) 1845. https://doi.org/10.1016/j.mee.2007.04.091
  2. K. Izumi, M. Doken, and H. Ariyoshi, Electron. Lett., 14 (1978) 593. https://doi.org/10.1049/el:19780397
  3. T. Yonehara, K. Sakaguchi, and N. Sano, Appl. Phys. Lett., 64 (1994) 2108. https://doi.org/10.1063/1.111698
  4. M. Bluel, Electron. Lett., 31 (1995) 1201. https://doi.org/10.1049/el:19950805
  5. K. Bernstein, and N. J. Rohrer, SOI CIRCUIT DESIGN CONCEPTS, Chap. 2. Academic Publishers (2002)
  6. M. Jurczak, T. Skotnicki, M. Paoli, B. Tormen, J. Martins, J. L. Regolini, D. Dutartre, P. Ribot, D. Lenoble, R. Pantel, and S. Monfray, IEEE TRANSACTIONS ON ELECTRON DEVICES, 47 (2000) 2179. https://doi.org/10.1109/16.877181
  7. V. Kilchytska, D. Flandre, and J.-P. Raskin, Applied Surface Science, 254 (2008) 6168. https://doi.org/10.1016/j.apsusc.2008.02.171
  8. S. Chiussi, F. Gontad, R. Rodriguez, C. Serra, J. Serra, B. Leon, T. Sulima, L. Hollt, and I. Eisele, Applied Surface Science, 254 (2008) 6030. https://doi.org/10.1016/j.apsusc.2008.02.183
  9. T. Sato, H. Nii, M. Hanano, K. Takenaka, H. Hayashi, K. Ishigo, T. Hirano, K. Ida, N. Aoki, T. Ohguro, K. Ino, I Mizushma, and Y. Tsunashima, Electron Devices Meeting, p. 37. IEDM Technical Digest. International (2001).
  10. S. Monfray, D. Chanemougame, S. Bore1, A. Talbot, F. Leverd, N. Planes, D. Delille, D. Dutartre, R. Palla, Y. Morand, S. Descombes, MP. Samson, N. Vulliet, T. Sparks, A. Vandooren, and T. Skotnicki, Electron Devices Meeting, p. 635. IEDM Technical Digest. International (2004).
  11. S. Hanison, P. Corone1, F. Leverd, R. Cerutti, R. Palla, D. Delille, S. Bore1, S. Jullian, R .Pante1, S.Descombes, D. Dutartre, Y. Morand, MP. Samson, D. Lenoble, A. Talbot, A. Villaret, S. Monfray, P. Mazoyer, J. Bustos, H. Brut, A. Cros, D. Munteanu, J-L. Autran, and T.Skotnicki, Electron Devices Meeting, p. 18. IEDM '03 Technical Digest. IEEE International (2003).
  12. S. Borel, V. Caubet, D. Lafond, O. Kermarrec, and Y. Campidelli, IEEE Transactions on Electron Devices, 47 (2000) 2179. https://doi.org/10.1109/16.877181
  13. C. Durand, F. Casset, P. Renaux, N. Abele, B. Legrand, D. Renaud, E. Ollier, P. Ancey, A. M. Ionescu, and L. Buchaillot, IEEE ELECTRON DEVICE LETTERS, 29 (2008) 494. https://doi.org/10.1109/LED.2008.919781
  14. S. Monfray, T. Skotnicki, C. Fenouillet-Beranger, N. Carriere, D. Chanemougame, Y. Morand, S. Descombes, A. Talbot, D. Dutartre, C. Jenny, P. Mazoyer, R. Palla, F. Leverd, Y. Le Friec, R. Pantel, S. Borel, D. Louis, N. Buffet, Solid-State Electronics, 48 (2004) 887. https://doi.org/10.1016/j.sse.2003.12.013
  15. Takeuchi, Matsuura, Murota, Appl. Phys. Lett., 77 (2000) 1828. https://doi.org/10.1063/1.1310624
  16. Y. Zhang, G. S. Oehrlein, and E. de Fesart, J. Appl. Phys., 71 (1992) 1936. https://doi.org/10.1063/1.351183
  17. Y. Yamamoto, K. Köpke, B. Tillack, Thin Solid Films, 517 (2008) 90. https://doi.org/10.1016/j.tsf.2008.08.095
  18. N. Loubet, T. Kormann, G. Chabanne, S. Denorme, D. Dutartre, Thin Solid Films, 517 (2008) 93. https://doi.org/10.1016/j.tsf.2008.08.081
  19. J. L. Liu, Y. Shi, F. Wang, Y. Lu, R. Zhang, P. Han, S. L. Gu, and Y. D. Zheng, Appl. Phys. Lett., 68 (1996) 352. https://doi.org/10.1063/1.116713
  20. N. Loubet, F. Boeuf, S. Monfray, C. Fenouillet- Beranger, S. Denorme, G. Bidal, T. Skotnicki, and D. Dutartre, ECS Transactions, 16 (2008) 29.
  21. U. Wiesera, U. Kunzea, K. Ismailb, and J. O. Chub, Physica E, 13 (2002) 1047. https://doi.org/10.1016/S1386-9477(02)00299-0
  22. U. Wieser, D. Iamundo, U. Kunze, T. Hackbarth and U. Konig, Semiconductor Science and Technology 15 (2000) 862. https://doi.org/10.1088/0268-1242/15/8/313
  23. T. S. Kim, Y-H. Kil, M. I. Shin, T. S. Jeong, S. Kang, C-J. Choi, and K. H. Shim, ECS Transactions, 33 (2010) 211.
  24. T. S. Kim, H. Y. Yang, Y. H. Kil, T. S. Jeong, S. Kang, and K. H. Shim, J. Korean Phys. Soc., 54 (2009) 2290. https://doi.org/10.3938/jkps.54.2290
  25. T. K. Carns, a M. O. Tanner, and K. L. Wang, J. Electrochem. Soc., 142 (1995) 1260. https://doi.org/10.1149/1.2044161
  26. D. Godbey, H. Hughes, E Kub, M. Twigg, L. Palkuti, P. Leonov, and J. Wang, Appl. Phys. Lett., 56 (1990) 373. https://doi.org/10.1063/1.102789
  27. D. J. Godbey, A. H. Krist, K. D. Hobart, and M. E. Twigg, J. Electrochem. Soc., 139 (1992) 2943. https://doi.org/10.1149/1.2069012
  28. Bo Jin, Xi Wang, Jing Chen, Xinli Cheng, and Zhijun Chen, Appl. Phys. Lett., 87 (2005) 051921. https://doi.org/10.1063/1.1991987
  29. B. Hollander, D. Buca, S. Mantl, and J. M. Hartmann, J. Electrochem. Soc., 157 (2010) H643. https://doi.org/10.1149/1.3382944
  30. Kirt R. Williams, Kishan Gupta, and Matthew Wasilik, J. MEMS, 12 (2003) 762.