DOI QR코드

DOI QR Code

Effect of Sb/Bi Ratio on Sintering and Grain Boundary Properties of ZnO-Bi2O3-Sb2O3-Mn3O4-Co3O4 Varistor

Sb/Bi비가 ZnO-Bi2O3-Sb2O3-Mn3O4-Co3O4 바리스터의 소결과 입계 특성에 미치는 영향

  • Hong, Youn-Woo (Functional Module Team, Korea Institute of Ceramic Engineering and Technology) ;
  • Lee, Young-Jin (Functional Module Team, Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Sei-Ki (Functional Module Team, Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Jin-Ho (School of Materials Science and Engineering, Kyungpook National University)
  • 홍연우 (한국세라믹기술원 기능성모듈팀) ;
  • 이영진 (한국세라믹기술원 기능성모듈팀) ;
  • 김세기 (한국세라믹기술원 기능성모듈팀) ;
  • 김진호 (경북대학교 신소재공학부)
  • Received : 2012.09.28
  • Accepted : 2012.10.23
  • Published : 2012.11.01

Abstract

In this study we aims to examine the co-doping effects of 1/3 mol% $Mn_3O_4+Co_3O_4$ (1:1) on the reaction, microstructure, and electrical properties such as the bulk defects and grain boundary properties of $ZnO-Bi_2O_3-Sb_2O_3$ (ZBS; Sb/Bi=0.5, 1.0, and 2.0) varistors. The sintering and electrical properties of Mn,Co-doped ZBS, ZBS(MCo) varistors were controlled by Sb/Bi ratio. Pyrochlore ($Zn_2Bi_3Sb_3O_{14}$) was decomposed and promoted densification at lower temperature on heating in Sb/Bi=1.0 by Mn rather than Co. Pyrochlore on cooling was reproduced in all systems however, spinel (${\alpha}$- or ${\beta}$-polymorph) did not formed in Sb/Bi=0.5. More homogeneous microstructure was obtained in $Sb/Bi{\geq}1.0$ In ZBS(MCo), the varistor characteristics were improved drastically (non-linear coefficient, ${\alpha}$=30~49), and seemed to form $Zn_i^{..}$(0.17 eV) and $V_o^{\bullet}$(0.33 eV) as dominant defects. From impedance and modulus spectroscopy (IS & MS), the grain boundaries have divided into two types, i.e. the one is tentatively assign to $ZnO/Bi_2O_3(Mn,Co)/ZnO$ (0.47 eV) and the other ZnO/ZnO (0.80~0.89 eV) homojunctions.

Keywords

References

  1. D. R. Clarke, J. Am. Ceram. Soc., 82, 485 (1999).
  2. K. Eda, IEEE Elec. Insulation. Mag., 5, 28 (1989).
  3. R. Einzinger, Ann. Rev. Mater. Sci., 17, 299 (1987). https://doi.org/10.1146/annurev.ms.17.080187.001503
  4. F. Greuter and G. Blatter, Semicond. Sci. Technol., 5, 111 (1990). https://doi.org/10.1088/0268-1242/5/2/001
  5. M. Inada and M. Matsuoka, Advances in Ceramics (American Ceramic Society, Columbus, 1983) p. 91.
  6. J. Kim, T. K. Kimura, and T. Yamaguchi, J. Am. Ceram. Soc., 72, 1390 (1989). https://doi.org/10.1111/j.1151-2916.1989.tb07659.x
  7. Y. W. Hong and J. H. Kim, J. Kor. Ceram. Soc., 37, 651 (2000).
  8. Y. W. Hong, H. S. Shin, D. H. Yeo, J. H. Kim, and J. H. Kim, J. KIEEME, 21, 738 (2008).
  9. L. Karanovic, D. Poleti, and D. Vasovic, Mater. Lett., 18, 191 (1994). https://doi.org/10.1016/0167-577X(94)90229-1
  10. A. Mergen and W. E. Lee, J. Euro. Ceram. Soc., 17, 1049 (1997). https://doi.org/10.1016/S0955-2219(96)00248-8
  11. Z. Brankovic, G. Brankovic, D. Poleti, and J. A. Varela, Ceram. Int., 27, 115 (2001). https://doi.org/10.1016/S0272-8842(00)00051-1
  12. H. R. Philipp, Materials Science Research, Tailoring Multiphase and Composite Ceramics (eds. R. E. Tressler, G. L. Messing, C. G. Pantano, and R. E. Newnham) (Prenum Press, New York/London, 1987) p. 481.
  13. M. Andres-Verges and A. R. West, J. Electroceram., 1, 125 (1997). https://doi.org/10.1023/A:1009906315725
  14. K. A. Abdullah, A. Bui, and A. Loubiere, J. Appl. Phys., 69, 4046 (1991). https://doi.org/10.1063/1.348414
  15. I. M. Hodge, M. D. Ingram, and A. R. West, J. Electroanal. Chem., 74, 125 (1976). https://doi.org/10.1016/S0022-0728(76)80229-X
  16. E. Barsoukov and J. R. Macdonald, Impedance Spectroscopy (John Wiley & Sons, New York, 2005) p. 1
  17. R. Gerhardt, J. Phys. Chem. Solids, 55, 1491 (1994). https://doi.org/10.1016/0022-3697(94)90575-4
  18. Y. W. Hong, H. S. Shin, D. H. Yeo, and J. H. Kim, J. KIEEME, 24, 969 (2011).
  19. Y. W. Hong, H. S. Shin, D. H. Yeo, J. H. Kim, and J. H. Kim, J. KIEEME, 22, 941 (2009).
  20. Y. W. Hong, H. S. Shin, D. H. Yeo, and J. H. Kim, J. KIEEME, 23, 942 (2010).
  21. Y. W. Hong and J. H. Kim, Ceram. Int., 30, 1307 (2004). https://doi.org/10.1016/j.ceramint.2003.12.026
  22. Y. W Hong, H. S. Shin, D. H. Yeo, and J. H. Kim, J. KIEEME, 23, 368 (2010).