DOI QR코드

DOI QR Code

Properties of EMNC According to Addition Contents Variation for Nanosilica (2) -For Mechanical, Electrical Properties

나노 실리카 충진함량 변화에 따른 EMNC의 특성 연구 (2) -기계적, 전기적 특성 중심으로-

  • Park, Jae-Jun (Department of Electrical Electronic Engineering, Joongbu University)
  • 박재준 (중부대학교 전기전자공학과)
  • Received : 2012.08.28
  • Accepted : 2012.10.04
  • Published : 2012.11.01

Abstract

In order to develop electrical insulation materials, epoxy-nanosilica-microsilica mixture composites (ENMC) was synthesized, and mechanical properties such as their tensile and flexural strength, and AC insulation breakdown strength were investigated. Properties of mechanical strength and AC insulation breakdown strength are analyzed as scale and shape parameter with respect to weibull plot. Their tensile and flexural strength, AC insulation breakdown strength were compared original epoxy or EMC to ENMC. The 4 phr nano-silica addition and the 65 wt% micron-silica mixture composite (ENMC) was found to have the highest tensile and flexural strength. In the tensile strength was improved 29%, and flexural strength was improved 60.9% higher than those of the original epoxy. In the insulation breakdown strength, ENMC_4 phr was improved 17% and ENMC_5 phr was improved 15.8% higher than those of the EMC.

Keywords

References

  1. P. O. Henk, T. W. Kortsen, and T. Kvarts, High Perform. Polym., 11, 281 (1999). https://doi.org/10.1088/0954-0083/11/3/304
  2. M. Ehsani, Z. Farhadinejad, S. Moemen-bellah, S. M. Bagher alavi, M. M. S. Shrazi, and H. Borsi, 26th Internal Power System Conference, Tehran, Iran, 11-E-CAM-2359 (2011).
  3. P. Bajaj, N. K. Jha, and A. Kumar, J. Appl. Polym. Sci., 56, 1339(1995). https://doi.org/10.1002/app.1995.070561015
  4. Y. Xu, D. D. L. Chung, and C. Mroz, Compos. Pt., A32, 1749 (2001).
  5. A. A. Wazzan, H. A. Al-Turaif, and A. F. Abdelkader, Polym-Plast Technol. Eng., 45, 1155 (2006). https://doi.org/10.1080/03602550600887285
  6. B. Wetzel, F. Haupert, and M. Q. Zhang, Compos. Sci. Technol., 63, 2055 (2003). https://doi.org/10.1016/S0266-3538(03)00115-5
  7. Y. Dong, D. Chaudhary, C. Ploumis, and K. T. Lau, Compos. Pt., A42, 1483 (2011).
  8. T. W. Dakin, IEEE Trans. Dielectr. Electr. Insul., EI-9, 121 (1974). https://doi.org/10.1109/TEI.1974.299321
  9. J. Sato, O. Sakaguchi, N. Kubota, S. Makishima, S. Kinoshita, T. Shioiri, T. Yoshida, M. Miyagawa, M. Homma, and E. Kaneko, IEEE/PES Transmission and Distribution Conference and Exhibition: Asia Pacific, 3, 1791 (2002).
  10. T. Shimizu, S. Kinoshita, S. Makishima, J. Sato, and O. Sakaguchi, IEEE 7th Intern. Conf. Properties and Application of Dielectric Materials (ICPADM), S22-5, 1194 (2003).
  11. J. J. Park, K. G. Yoon, and J. Y. Lee, Trans. Electr. Electron. Mater., 12, 98 (2011). https://doi.org/10.4313/TEEM.2011.12.3.98
  12. T. Imai, F. Sawa, T. Nakano, T. Ozaki, T. Shimizu, M. Kozako, and T. Tanaka, IEEE Transactions on Dielectrics and Electrical Insulation, 13, 319 (2006). https://doi.org/10.1109/TDEI.2006.1624276
  13. P. L. Teh, M. Mariatti, H. M. Akil, C. K. Yeoh, K.N. Seetharamu, A. N. R. Wagiman, and K. S. Behc, Mater. Lett., 61, 2156 (2007). https://doi.org/10.1016/j.matlet.2006.08.036
  14. J. J. Park, C. H. Lee, J. Y. Lee, and H. D. Kim, IEEE Trns. Dielectr. Electr. Insul., 18, 667 (2011). https://doi.org/10.1109/TDEI.2011.5931051
  15. J. J. Park and J. Y. Lee, IEEE Trns. Dielectr. Electr. Insul., 17, 1516 (2010). https://doi.org/10.1109/TDEI.2010.5595553
  16. B. Wetzel, F. Haupert, and M. Q. Zhang, Compos. Sci. Technol., 63, 2055 (2003). https://doi.org/10.1016/S0266-3538(03)00115-5
  17. J. A. Kim, D. G. Seong, T. J. Kang, and J. R. Youn. Carbon, 44, 1898 (2006). https://doi.org/10.1016/j.carbon.2006.02.026
  18. S. Deng, L. Ye, and K. Friedrich, J. Mater. Sci., 42, 2766 (2007). https://doi.org/10.1007/s10853-006-1420-x
  19. A. Yasmin, J. J. Luo, J. L. Abot, and I. M. Daniel, Compos. Sci. Technol., 66, 2415 (2006). https://doi.org/10.1016/j.compscitech.2006.03.011
  20. H. J. Song and Z. Z. Zhang, Tribol. Int., 41, 396 (2008). https://doi.org/10.1016/j.triboint.2007.09.004
  21. S. W. Choi and J. J. Park, J. KIEEME, 25, 798 (2012).
  22. M. Z. Rong, Q. Y. Zhang, X. H. Zheng, M. Zeng, R. Walter, and K. Friedrich, Polymer, 42, 167 (2001). https://doi.org/10.1016/S0032-3861(00)00325-6
  23. B. Suresha, B. N. R. Kumar, M. Venkataramareddy, and T. Jayaraju, Mater. Design, 31, 1993 (2010). https://doi.org/10.1016/j.matdes.2009.10.031
  24. F. Hussain, J. Chen, and M. Hojjati, Mater. Sci. Eng., A445, 467 (2007).
  25. L. E. Nielsen, Particulate-filled Materials (Marcel Dekker, New York, 1974) p. 379.
  26. S. Singha and M. J. Thomas, IEEE Trans. Dielectr. Electr. Insul., 15, (2008).
  27. T. Imai, F. Sawa, T. Ozaki, Y. Inoue, T. Shimizu, and T. Tanaka, IEEE Conf. Electr. Insul. Dielectr. Phenomena (CEIDP), 306 (2006).
  28. Y. Hu, R. C. Smith, J. K. Nelson, and L. S. Schadler, IEEE Conf. Electr. Insul. Dielectr. Phenomena (CEIDP), 31 (2006).
  29. T. Tanaka, IEEE Trans. Dielectr. Electr. Insul., 12, 914 (2005). https://doi.org/10.1109/TDEI.2005.1522186