DOI QR코드

DOI QR Code

Photovoltaic Efficiencies on Dye-Sensitized Solar Cells Assembled with Graphene-Linked TiO2 Anode Films

  • Kim, A-Young (Department of Chemistry, College of Science, Yeungnam University) ;
  • Kim, Ji-Eun (Department of Chemistry, College of Science, Yeungnam University) ;
  • Kim, Min-Young (Korea Science Academy of Korea Advanced Institute of Science and Technology) ;
  • Ha, Seung-Won (Korea Science Academy of Korea Advanced Institute of Science and Technology) ;
  • Tien, Ngyen Thi Thuy (Korea Science Academy of Korea Advanced Institute of Science and Technology) ;
  • Kang, Mi-Sook (Department of Chemistry, College of Science, Yeungnam University)
  • Received : 2012.06.14
  • Accepted : 2012.07.19
  • Published : 2012.10.20

Abstract

To promote the photoelectric conversion efficiency of dye-sensitized solar cells (DSSCs), graphene is introduced as a working electrode with $TiO_2$ in this study, because it has great transparency and very good conductivity. XRD patterns indicate the presence of graphene and $TiO_2$ particles in graphene-linked $TiO_2$ samples. Moreover, TEM pictures also show that the nano-sized $TiO_2$ particles are highly dispersed and well-linked onto the thin layered graphene. On the basis of the UV-visible spectra, the band gaps of $TiO_2$, 1.0 wt % graphene-$TiO_2$, 5.0 wt % graphene-$TiO_2$, and 10.0 wt % graphene-$TiO_2$ are 3.16, 2.94, 2.25, and 2.11 eV, respectively. Compared to pure $TiO_2$, the energy conversion efficiency was enhanced considerably by the application of graphene-linked $TiO_2$ anode films in the DSSCs to approximately 6.05% for 0.1 wt % graphene-$TiO_2$ with N719 dye (10.0 mm film thickness and $5.0mm{\times}5.0mm$ cell area) under $100mW/cm^2$ of simulated sunlight. The quantum efficiency was the highest when 1.0 wt % of graphene was used. In impedance curves, the resistance was smallest for 1.0 wt % graphene-$TiO_2$-DSSC.

Keywords

References

  1. Chae, J.; Kim, D. Y.; Kim, S.; Kang, M. J. Ind. Eng. Chem. 2010, 16, 906. https://doi.org/10.1016/j.jiec.2010.09.012
  2. Lee, Y.; Chae, J.; Kang, M. J. Ind. Eng. Chem. 2010, 16, 609. https://doi.org/10.1016/j.jiec.2010.03.008
  3. Ko, K. H.; Lee, Y. C.; Jung, Y. J. J. Colloid Interf. Sci. 2005, 283, 482. https://doi.org/10.1016/j.jcis.2004.09.009
  4. Dhas, V.; Muduli, S.; Agarkar, S.; Rana, A.; Hannoyer, B.; Banerjee, R.; Ogale, S. Sol. Energy 2011, 85, 1213. https://doi.org/10.1016/j.solener.2011.02.029
  5. Curtiss, S.; Kovash, Jr.; Hoefelmeyer, D. J.; Logue, B. A. Electrochimica Acta 2012, 67, 18. https://doi.org/10.1016/j.electacta.2012.01.092
  6. Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S. B. T.; Ruoff, R. S. Carbon 2007, 45, 1558. https://doi.org/10.1016/j.carbon.2007.02.034
  7. Wang, X.; Zhi, L.; Mullen, K. Nano Lett. 2008, 8, 323. https://doi.org/10.1021/nl072838r
  8. Zhou, K.; Zhu, Y.; Yang, X.; Li, C. New J. Chem. 2010, 34, 2950. https://doi.org/10.1039/c0nj00283f
  9. Zhang, X.; Sun, Y.; Cui, X.; Jiang, Z. Inter. J. Hydrogen Energy 2012, 37, 811. https://doi.org/10.1016/j.ijhydene.2011.04.053
  10. Li, Z.; Chen, Y.; Du, Y.; Wang, X.; Yang, P.; Zheng, J. Inter. J. Hydrogen Energy 2012, 37, 4880. https://doi.org/10.1016/j.ijhydene.2011.12.045
  11. Hou, C.; Zhang, Q.; Li, Y.; Wang, H. J. Hazard. Mater. 2012, 205, 229. https://doi.org/10.1016/j.jhazmat.2011.12.071
  12. Wu, J.; Shen, X.; Jiang, L.; Wang, K.; Chen, K. Appl. Surf. Sci. 2012, 256, 2826.
  13. Ng, Y. H.; Iwase, A.; Bell, N. J.; Kudo, A.; Amal, R. Catal. Today 2011, 164, 353. https://doi.org/10.1016/j.cattod.2010.10.090
  14. Yeo, M.-K.; Kang, M. Water Res. 2006, 40, 1906. https://doi.org/10.1016/j.watres.2005.12.034
  15. Hu, H.; Wang, X.; Wang, J.; Liu, F.; Zhang, M.; Xu, C. Appl. Surf. Sci. 2011, 257, 2637. https://doi.org/10.1016/j.apsusc.2010.10.035
  16. Choi, H.-J.; Kang, M. Inter. J. Hydrogen Energy 2007, 32, 3841. https://doi.org/10.1016/j.ijhydene.2007.05.011
  17. Tauc, J. Amorphous and Liquid Semiconductors; Plenum Press: New York, 1974; p 171.
  18. Chae, J.; Kang, M. J. Power Sources 2011, 196, 4143. https://doi.org/10.1016/j.jpowsour.2010.12.109
  19. Shen, Q.; Sato, T.; Hashimoto, M.; Chen, C.; Toyoda, T. Thin Solid Films 2006, 499, 299. https://doi.org/10.1016/j.tsf.2005.07.019

Cited by

  1. Graphene Materials and Their Use in Dye-Sensitized Solar Cells vol.114, pp.12, 2014, https://doi.org/10.1021/cr400412a
  2. Reduced graphene oxide-titania nanocomposite-modified photoanode for efficient dye-sensitized solar cells vol.39, pp.6, 2015, https://doi.org/10.1002/er.3307
  3. Effect of Different Graphene Oxide Contents on Dye-Sensitized Solar Cells vol.5, pp.4, 2015, https://doi.org/10.1109/JPHOTOV.2015.2419137
  4. A new green method for the preparation of titanium dioxide-graphene composite using cyclodextrin as a linker with enhanced photoexcited electron transfer and photocatalytic properties vol.35, pp.5, 2016, https://doi.org/10.1002/ep.12343
  5. Study of N–Ag–Zn/TiO2, N–Ag–Zr/TiO2 with N719 and P3OT co-sensitization effect on the performance of dye-sensitized solar cell vol.78, pp.1, 2016, https://doi.org/10.1007/s10971-015-3912-0
  6. Process optimization of dye-sensitized solar cells using $$\hbox {TiO}_{2}$$ TiO 2 –graphene nanocomposites vol.40, pp.7, 2017, https://doi.org/10.1007/s12034-017-1492-z
  7. Effect of Nanodiamonds on the Optoelectronic Properties of TiO $$_{2 }$$ 2 Photoanode in Dye-Sensitized Solar Cell pp.2191-4281, 2017, https://doi.org/10.1007/s13369-017-2979-z
  8. Enhanced Photovoltaic Parameters of Titania/Graphene Nanocomposites Based Dye Sensitized Solar Cells vol.1253, pp.None, 2012, https://doi.org/10.1088/1742-6596/1253/1/012030
  9. Facile preparation of TiO2 nanoparticles decorated by the graphene for enhancement of dye-sensitized solar cell performance vol.34, pp.12, 2012, https://doi.org/10.1557/jmr.2019.142