References
- Mohan, M.; Gupta, M. P.; Chandra, L.; Jha, N. K. Inorg. Chim. Acta 1988, 151, 61. https://doi.org/10.1016/S0020-1693(00)83485-4
- Kaymakcioglu, K. B.; Oruç, E. E.; Unsalan, S.; Kandemirli, F.; Shvets, N.; Rollas, S.; Anatholy, D. Eur. J. Med. Chem. 2006, 41, 1253. https://doi.org/10.1016/j.ejmech.2006.06.009
- Gada, A. M.; El-Dissoukyb, A.; Mansourb, E. M.; El-Maghraby, A. Polym. Degrad. Stabil. 2000, 68, 153. https://doi.org/10.1016/S0141-3910(99)00178-0
- Zhong, X.; Wei, H.-L.; Liu, W.-S.; Wang, D.-Q.; Wang, X. Bioorg. Med. Chem. Lett. 2007, 17, 3774. https://doi.org/10.1016/j.bmcl.2007.04.006
- Terra, L. H.; Areias, A. M. C.; Gaubeur, I.; Suez-Iha, M. E. V. Spectrosc. Lett. 1999, 32, 257. https://doi.org/10.1080/00387019909349981
- Hu, Q.; Yang, G.; Huang, Z.; Yin, J. Bull. Korean Chem. Soc. 2004, 25, 545. https://doi.org/10.5012/bkcs.2004.25.4.545
- Souza, E. R.; Silva, I. G. N.; Teotonio, E. E. S. C.; Felinto, M. C. F. J. Lumin. 2010, 130, 283.
- Paraskevopoulou, P.; Ai, L.; Wang, Q. W.; Pinnapareddy, D.; Acharyya, R.; Dinda, R.; Das, P.; Çelenligil-Çetin, R.; Floros, G.; Sanakis, Y.; Choudhury, A. P.; Rath, N.; Stavropoulos, P. Inorg.Chem. 2010, 49, 108. https://doi.org/10.1021/ic9015838
- Mishra, A.; Tasiopoulos, A. J.; Wernsdorfer, W.; Moushi, E. E.; Moulton, B.; Zaworotko, M. J.; Abboud, K. A.; Christou, G. Inorg. Chem. 2008, 47, 4832. https://doi.org/10.1021/ic8001064
- Ambrosi, G.; Formica, M.; Fusi, V.; Giorgi, L.; Guerri, A.; Macedi, E.; Micheloni, M.; Paoli, P.; Pontellini, R.; Rossi, P. Inorg. Chem. 2009, 48, 5901. https://doi.org/10.1021/ic900231h
- Hembury, A. G.; Borovkov, V.; Inoue, Y. Chem. Rev. 2008, 108, 1. https://doi.org/10.1021/cr050005k
- Kim, H. K.; Roh, S.-G.; Hong, K. S.; Ka, J.-W.; Baek, N. S.; Oh, J. B.; Nah, M.-K.; Cha, Y. H.; Ko, J. Macromol. Res. 2003, 11, 133. https://doi.org/10.1007/BF03218343
- Roh, S.-G.; Baek, N. S.; Kim, Y. H.; Kim, H. K. Bull. Korean Chem. Soc. 2007, 28, 1249. https://doi.org/10.5012/bkcs.2007.28.8.1249
- Xu, C. J.; Xie, F.; Guo, X. Z.; Yang, H. Spectrochim. Acta Part A 2005, 61, 2005. https://doi.org/10.1016/j.saa.2004.07.034
- Xu, C. J. J. Rare Earths 2006, 24, 429. https://doi.org/10.1016/S1002-0721(06)60137-3
- Hasegawa, Y.; Wada, Y.; Yanagida, S. J. Photochem. Photobiol. Photochem. Rev. 2004, 5, 183. https://doi.org/10.1016/j.jphotochemrev.2004.10.003
- Ci, Y. X.; Li, Y. Z.; Chang, W. B. Anal. Chim. Acta 1991, 248, 589. https://doi.org/10.1016/S0003-2670(00)84680-2
- Gottes field, J. M.; Nealy, L.; Trauger, J. W.; Baird, E. E.; Dervan, P. B. Nature 1997, 387, 202. https://doi.org/10.1038/387202a0
- Herman, D. M.; Turner, J. M.; Baird, E. E.; Derban, P. B. J. Am. Chem. Soc. 1999, 121, 1121. https://doi.org/10.1021/ja983206x
- Qin, D.-D.; Qi, G.-F.; Yang, Z.-Y.; Wu, J.-C.; Liu, Y.-C. J. Fluoresc. 2009, 19, 409. https://doi.org/10.1007/s10895-008-0427-x
- Sun, Y.; Li, H.-G.; Wang, X.; Fu, S.; Wang, D. Acta Cryst. 2009, E65, o262.
- Cui, J.-C.; Pan, Q.-X.; Yin, H.-D.; Qiao, Y.-L. Acta Cryst. 2007, E63, o2633.
- Dewar, M. J. S.; Zoebisch, E. G.; Healy, E. F. J. Am. Chem. Soc. 1985, 107, 3902. https://doi.org/10.1021/ja00299a024
- Becke, A. D. J. Chem. Phys. 1993, 98, 5648. https://doi.org/10.1063/1.464913
- Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785. https://doi.org/10.1103/PhysRevB.37.785
- Schmidt, M. W.; Baldridge, K. K.; Boatz, J. A.; Elbert, S. T.; Gordon, M. S.; Jensen, J. H.; Koseki, S.; Matsunaga, N.; Nguyen, K. A.; Su, S.; Windus, T. L.; Dupuis, M.; Montgomery, J. A., Jr. J. Comput. Chem. 1993, 14, 1347. https://doi.org/10.1002/jcc.540141112
- Blois, M. S. Nature 1958, 181, 1199. https://doi.org/10.1038/1811199a0
- Jablonski, Z.; Rychlowska-Himmel, I.; Dyrek, M. Spectrochim. Acta Part A 1979, 35, 1297. https://doi.org/10.1016/0584-8539(79)80080-X
- Allen, F. H.; Kennard, O.; Watson, D. G.; Brammer, L.; Orpen, A. G.; Taylor, R. J. Chem. Soc. Perkin Trans. 2 1987, pp S1.
- Xia, S. W.; Xu, X.; Sun, Y. L.; Fan, Y. H.; Bi, C. F.; Zhang, D. M.; Yang, L. R. Chin. J. Struct. Chem. 2006, 25, 197.
- Zhao, P. S.; Shao, D. L.; Zhang, J.; Wei, Y.; Jian, F. F. Bull. Korean Chem. Soc. 2009, 30, 1667. https://doi.org/10.5012/bkcs.2009.30.7.1667
- Picot, A.; Malvolti, F.; Guennic, B. L.; Baldeck, P. L.; Williams, J. A. G.; Andraud, C.; Maury, O. Inorg. Chem. 2007, 46, 2659. https://doi.org/10.1021/ic062181x
- Issa, R. M.; Khedr, A. M.; Rizk, H. J. Chin. Chem. Soc. 2008, 55, 875.
- Xu, C. J. Rare Earths. 2010, 28, 854. https://doi.org/10.1016/S1002-0721(09)60229-5
- Baek, N. S.; Nah, M.-K.; Kim, Y. H.; Roh, S.-G.; Kim, H. K. Bull. Korean Chem. Soc. 2004, 25, 443. https://doi.org/10.5012/bkcs.2004.25.4.443
Cited by
- ) complexes with 2,6-diformyl-4-methylphenol-di(benzoylhydrazone): structure, spectra and biological study in human cell lines vol.39, pp.2, 2015, https://doi.org/10.1039/C4NJ01464B
- Crystal structure and characterization of new cadmium complex from 4-pyridin-carbohydrazide and 2-chlorobenzaldehyde vol.8, pp.2, 2017, https://doi.org/10.5155/eurjchem.8.2.101-104.1544
- Synthesis and Biological Evaluation of Some New Thiophene, Thiazole, Dithiolane Derivatives and Related Compounds pp.1563-5333, 2018, https://doi.org/10.1080/10406638.2018.1555174
- Computational simulation and biological studies on 3-(2-(2-hydroxybenzoyl)hydrazono)-N-(pyridine-2-yl)butanamide complexes vol.1101, pp.None, 2012, https://doi.org/10.1016/j.molstruc.2015.08.008
- Anti-microbial and Anti-inflammatory Activity of New 4-methoxy-3-(methoxymethyl) Phenol and (E)-N'-(5-bromo-2-methoxybenzylidene)-4-methoxy Benzohydrazide Isolated from Calotropis gigantean white vol.23, pp.1, 2012, https://doi.org/10.20307/nps.2017.23.1.69
- Synthesis, spectroscopic characterization, antimicrobial and antitumor studies of mono-, bi- and tri-nuclear metal complexes of a new Schiff base ligand derived from o-acetoacetylphenol vol.1150, pp.None, 2012, https://doi.org/10.1016/j.molstruc.2017.08.009
- A theoretical and experimental study on isonitrosoacetophenone nicotinoyl hydrazone: Crystal structure, spectroscopic properties, NBO, NPA and NLMO analyses and the investigation of interaction with s vol.1162, pp.None, 2018, https://doi.org/10.1016/j.molstruc.2018.02.079
- Green Synthesis for 3-(2-Benzoylhydrazono)-N-(pyridin-2-yl)butanamide Complexes: Spectral, Analytical, Modelling, MOE Docking and Biological Studies vol.30, pp.5, 2012, https://doi.org/10.1007/s10904-019-01326-6
- Chelation behavior of N′-(4-(dimethylamino)benzylidene)-2-oxo-2H-chromene-3-carbohydrazide towards Cd(П), Zn(П), Ni(П), Hg(П), Cu(П) and Co(П) metal ions in presence of SiO2 vol.12, pp.6, 2020, https://doi.org/10.1007/s12633-019-00198-2
- Ball milling approach to prepare new Cd(II) and Zn(II) complexes; characterization, crystal packing, cyclic voltammetry and MOE-docking agrees with biological assay vol.1218, pp.None, 2012, https://doi.org/10.1016/j.molstruc.2020.128473
- DFT investigation onto axial ligand effects on the TPP ligand and its manganese complexes [Mn(TPP)(O)(X)] (X=F-, Cl-, Br-) vol.17, pp.11, 2012, https://doi.org/10.1007/s13738-020-01966-3
- Divalent manganese, cobalt, copper and cadmium complexes of (Z)‐N‐benzoyl‐N′‐(1H‐1,2,4‐triazol‐3‐yl)carbamimidothioic acid: Preparation, character vol.35, pp.1, 2012, https://doi.org/10.1002/aoc.6037
- Ball milling: a simple and efficient method for quantitative solvent-free synthesis of new potential bioactive Ni(II) and Co(II) complexes vol.8, pp.1, 2021, https://doi.org/10.1080/2314808x.2021.1909208
- A Simple and Efficient Method for Quantitative Synthesis of Cu (II) Complexes in Presence of SiO2: Structure Elucidation, DFT, Eukaryotic DNA, Antimicrobial and Potentiometric Studies vol.13, pp.4, 2012, https://doi.org/10.1007/s12633-020-00463-9
- Ethyl Cellulose/Rare Earth Complexes Light‐Conversion Films and Exploration in Acid Rain Detection vol.307, pp.1, 2022, https://doi.org/10.1002/mame.202100630