DOI QR코드

DOI QR Code

Synthesis, Antioxidant Activity and Fluorescence Properties of Novel Europium Complexes with (E)-2- or 4-hydroxy-N'-[(2-hydroxynaphthalen-1-yl)methylene]benzohydrazide Schiff Base

  • Received : 2012.05.18
  • Accepted : 2012.07.16
  • Published : 2012.10.20

Abstract

Two novel Eu(III) complexes with notable properties have been successfully prepared with hydrazone Schiff base ligands, (E)-2-hydroxy-N'-[(2-hydroxynaphthalen-1-yl)methylene]benzohydrazide (3a) and (E)-4-hydroxy-N'-[(2-hydroxynaphthalen-1-yl)methylene]benzohydrazide (3b). DFT, FMO energy and Mulliken charge distribution studies of the ligands allowed us to hypothesize that their HC=N, > C=O and -OH (naphthyl) groups were involved in coordinating with the $Eu^{3+}$ ion. The eight coordination sites of the $Eu^{3+}$ ion were occupied by the three functional groups of the two ligands (3a or 3b) mentioned above and two water molecules. Similar UV, IR and fluorescence spectra indicated the presence of comparable coordination environments for the $Eu^{3+}$ ion in both complexes. Both the ligands and their complexes exhibited moderate DPPH radical scavenging activity. Moreover, it was found that the Eu(III) complexes exhibited fluorescence properties.

Keywords

References

  1. Mohan, M.; Gupta, M. P.; Chandra, L.; Jha, N. K. Inorg. Chim. Acta 1988, 151, 61. https://doi.org/10.1016/S0020-1693(00)83485-4
  2. Kaymakcioglu, K. B.; Oruç, E. E.; Unsalan, S.; Kandemirli, F.; Shvets, N.; Rollas, S.; Anatholy, D. Eur. J. Med. Chem. 2006, 41, 1253. https://doi.org/10.1016/j.ejmech.2006.06.009
  3. Gada, A. M.; El-Dissoukyb, A.; Mansourb, E. M.; El-Maghraby, A. Polym. Degrad. Stabil. 2000, 68, 153. https://doi.org/10.1016/S0141-3910(99)00178-0
  4. Zhong, X.; Wei, H.-L.; Liu, W.-S.; Wang, D.-Q.; Wang, X. Bioorg. Med. Chem. Lett. 2007, 17, 3774. https://doi.org/10.1016/j.bmcl.2007.04.006
  5. Terra, L. H.; Areias, A. M. C.; Gaubeur, I.; Suez-Iha, M. E. V. Spectrosc. Lett. 1999, 32, 257. https://doi.org/10.1080/00387019909349981
  6. Hu, Q.; Yang, G.; Huang, Z.; Yin, J. Bull. Korean Chem. Soc. 2004, 25, 545. https://doi.org/10.5012/bkcs.2004.25.4.545
  7. Souza, E. R.; Silva, I. G. N.; Teotonio, E. E. S. C.; Felinto, M. C. F. J. Lumin. 2010, 130, 283.
  8. Paraskevopoulou, P.; Ai, L.; Wang, Q. W.; Pinnapareddy, D.; Acharyya, R.; Dinda, R.; Das, P.; Çelenligil-Çetin, R.; Floros, G.; Sanakis, Y.; Choudhury, A. P.; Rath, N.; Stavropoulos, P. Inorg.Chem. 2010, 49, 108. https://doi.org/10.1021/ic9015838
  9. Mishra, A.; Tasiopoulos, A. J.; Wernsdorfer, W.; Moushi, E. E.; Moulton, B.; Zaworotko, M. J.; Abboud, K. A.; Christou, G. Inorg. Chem. 2008, 47, 4832. https://doi.org/10.1021/ic8001064
  10. Ambrosi, G.; Formica, M.; Fusi, V.; Giorgi, L.; Guerri, A.; Macedi, E.; Micheloni, M.; Paoli, P.; Pontellini, R.; Rossi, P. Inorg. Chem. 2009, 48, 5901. https://doi.org/10.1021/ic900231h
  11. Hembury, A. G.; Borovkov, V.; Inoue, Y. Chem. Rev. 2008, 108, 1. https://doi.org/10.1021/cr050005k
  12. Kim, H. K.; Roh, S.-G.; Hong, K. S.; Ka, J.-W.; Baek, N. S.; Oh, J. B.; Nah, M.-K.; Cha, Y. H.; Ko, J. Macromol. Res. 2003, 11, 133. https://doi.org/10.1007/BF03218343
  13. Roh, S.-G.; Baek, N. S.; Kim, Y. H.; Kim, H. K. Bull. Korean Chem. Soc. 2007, 28, 1249. https://doi.org/10.5012/bkcs.2007.28.8.1249
  14. Xu, C. J.; Xie, F.; Guo, X. Z.; Yang, H. Spectrochim. Acta Part A 2005, 61, 2005. https://doi.org/10.1016/j.saa.2004.07.034
  15. Xu, C. J. J. Rare Earths 2006, 24, 429. https://doi.org/10.1016/S1002-0721(06)60137-3
  16. Hasegawa, Y.; Wada, Y.; Yanagida, S. J. Photochem. Photobiol. Photochem. Rev. 2004, 5, 183. https://doi.org/10.1016/j.jphotochemrev.2004.10.003
  17. Ci, Y. X.; Li, Y. Z.; Chang, W. B. Anal. Chim. Acta 1991, 248, 589. https://doi.org/10.1016/S0003-2670(00)84680-2
  18. Gottes field, J. M.; Nealy, L.; Trauger, J. W.; Baird, E. E.; Dervan, P. B. Nature 1997, 387, 202. https://doi.org/10.1038/387202a0
  19. Herman, D. M.; Turner, J. M.; Baird, E. E.; Derban, P. B. J. Am. Chem. Soc. 1999, 121, 1121. https://doi.org/10.1021/ja983206x
  20. Qin, D.-D.; Qi, G.-F.; Yang, Z.-Y.; Wu, J.-C.; Liu, Y.-C. J. Fluoresc. 2009, 19, 409. https://doi.org/10.1007/s10895-008-0427-x
  21. Sun, Y.; Li, H.-G.; Wang, X.; Fu, S.; Wang, D. Acta Cryst. 2009, E65, o262.
  22. Cui, J.-C.; Pan, Q.-X.; Yin, H.-D.; Qiao, Y.-L. Acta Cryst. 2007, E63, o2633.
  23. Dewar, M. J. S.; Zoebisch, E. G.; Healy, E. F. J. Am. Chem. Soc. 1985, 107, 3902. https://doi.org/10.1021/ja00299a024
  24. Becke, A. D. J. Chem. Phys. 1993, 98, 5648. https://doi.org/10.1063/1.464913
  25. Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785. https://doi.org/10.1103/PhysRevB.37.785
  26. Schmidt, M. W.; Baldridge, K. K.; Boatz, J. A.; Elbert, S. T.; Gordon, M. S.; Jensen, J. H.; Koseki, S.; Matsunaga, N.; Nguyen, K. A.; Su, S.; Windus, T. L.; Dupuis, M.; Montgomery, J. A., Jr. J. Comput. Chem. 1993, 14, 1347. https://doi.org/10.1002/jcc.540141112
  27. Blois, M. S. Nature 1958, 181, 1199. https://doi.org/10.1038/1811199a0
  28. Jablonski, Z.; Rychlowska-Himmel, I.; Dyrek, M. Spectrochim. Acta Part A 1979, 35, 1297. https://doi.org/10.1016/0584-8539(79)80080-X
  29. Allen, F. H.; Kennard, O.; Watson, D. G.; Brammer, L.; Orpen, A. G.; Taylor, R. J. Chem. Soc. Perkin Trans. 2 1987, pp S1.
  30. Xia, S. W.; Xu, X.; Sun, Y. L.; Fan, Y. H.; Bi, C. F.; Zhang, D. M.; Yang, L. R. Chin. J. Struct. Chem. 2006, 25, 197.
  31. Zhao, P. S.; Shao, D. L.; Zhang, J.; Wei, Y.; Jian, F. F. Bull. Korean Chem. Soc. 2009, 30, 1667. https://doi.org/10.5012/bkcs.2009.30.7.1667
  32. Picot, A.; Malvolti, F.; Guennic, B. L.; Baldeck, P. L.; Williams, J. A. G.; Andraud, C.; Maury, O. Inorg. Chem. 2007, 46, 2659. https://doi.org/10.1021/ic062181x
  33. Issa, R. M.; Khedr, A. M.; Rizk, H. J. Chin. Chem. Soc. 2008, 55, 875.
  34. Xu, C. J. Rare Earths. 2010, 28, 854. https://doi.org/10.1016/S1002-0721(09)60229-5
  35. Baek, N. S.; Nah, M.-K.; Kim, Y. H.; Roh, S.-G.; Kim, H. K. Bull. Korean Chem. Soc. 2004, 25, 443. https://doi.org/10.5012/bkcs.2004.25.4.443

Cited by

  1. ) complexes with 2,6-diformyl-4-methylphenol-di(benzoylhydrazone): structure, spectra and biological study in human cell lines vol.39, pp.2, 2015, https://doi.org/10.1039/C4NJ01464B
  2. Crystal structure and characterization of new cadmium complex from 4-pyridin-carbohydrazide and 2-chlorobenzaldehyde vol.8, pp.2, 2017, https://doi.org/10.5155/eurjchem.8.2.101-104.1544
  3. Synthesis and Biological Evaluation of Some New Thiophene, Thiazole, Dithiolane Derivatives and Related Compounds pp.1563-5333, 2018, https://doi.org/10.1080/10406638.2018.1555174
  4. Computational simulation and biological studies on 3-(2-(2-hydroxybenzoyl)hydrazono)-N-(pyridine-2-yl)butanamide complexes vol.1101, pp.None, 2012, https://doi.org/10.1016/j.molstruc.2015.08.008
  5. Anti-microbial and Anti-inflammatory Activity of New 4-methoxy-3-(methoxymethyl) Phenol and (E)-N'-(5-bromo-2-methoxybenzylidene)-4-methoxy Benzohydrazide Isolated from Calotropis gigantean white vol.23, pp.1, 2012, https://doi.org/10.20307/nps.2017.23.1.69
  6. Synthesis, spectroscopic characterization, antimicrobial and antitumor studies of mono-, bi- and tri-nuclear metal complexes of a new Schiff base ligand derived from o-acetoacetylphenol vol.1150, pp.None, 2012, https://doi.org/10.1016/j.molstruc.2017.08.009
  7. A theoretical and experimental study on isonitrosoacetophenone nicotinoyl hydrazone: Crystal structure, spectroscopic properties, NBO, NPA and NLMO analyses and the investigation of interaction with s vol.1162, pp.None, 2018, https://doi.org/10.1016/j.molstruc.2018.02.079
  8. Green Synthesis for 3-(2-Benzoylhydrazono)-N-(pyridin-2-yl)butanamide Complexes: Spectral, Analytical, Modelling, MOE Docking and Biological Studies vol.30, pp.5, 2012, https://doi.org/10.1007/s10904-019-01326-6
  9. Chelation behavior of N′-(4-(dimethylamino)benzylidene)-2-oxo-2H-chromene-3-carbohydrazide towards Cd(П), Zn(П), Ni(П), Hg(П), Cu(П) and Co(П) metal ions in presence of SiO2 vol.12, pp.6, 2020, https://doi.org/10.1007/s12633-019-00198-2
  10. Ball milling approach to prepare new Cd(II) and Zn(II) complexes; characterization, crystal packing, cyclic voltammetry and MOE-docking agrees with biological assay vol.1218, pp.None, 2012, https://doi.org/10.1016/j.molstruc.2020.128473
  11. DFT investigation onto axial ligand effects on the TPP ligand and its manganese complexes [Mn(TPP)(O)(X)] (X=F-, Cl-, Br-) vol.17, pp.11, 2012, https://doi.org/10.1007/s13738-020-01966-3
  12. Divalent manganese, cobalt, copper and cadmium complexes of (Z)‐N‐benzoyl‐N′‐(1H‐1,2,4‐triazol‐3‐yl)carbamimidothioic acid: Preparation, character vol.35, pp.1, 2012, https://doi.org/10.1002/aoc.6037
  13. Ball milling: a simple and efficient method for quantitative solvent-free synthesis of new potential bioactive Ni(II) and Co(II) complexes vol.8, pp.1, 2021, https://doi.org/10.1080/2314808x.2021.1909208
  14. A Simple and Efficient Method for Quantitative Synthesis of Cu (II) Complexes in Presence of SiO2: Structure Elucidation, DFT, Eukaryotic DNA, Antimicrobial and Potentiometric Studies vol.13, pp.4, 2012, https://doi.org/10.1007/s12633-020-00463-9
  15. Ethyl Cellulose/Rare Earth Complexes Light‐Conversion Films and Exploration in Acid Rain Detection vol.307, pp.1, 2022, https://doi.org/10.1002/mame.202100630