DOI QR코드

DOI QR Code

Synthesis and Physicochemical Characterization of Biodegradable PLGA-based Magnetic Nanoparticles Containing Amoxicilin

  • Alimohammadi, Somayeh (Drug Applied Research Center, Tabriz University of Medical Sciences) ;
  • Salehi, Roya (Drug Applied Research Center, Tabriz University of Medical Sciences) ;
  • Amini, Niloofar (Faculty of Pharmacy, Tabriz University of Medical Sciences) ;
  • Davaran, Soodabeh (Faculty of Pharmacy, Tabriz University of Medical Sciences)
  • Received : 2012.04.21
  • Accepted : 2012.07.05
  • Published : 2012.10.20

Abstract

The purposes of this research were to synthesize amoxicillin-carrying magnetic nanoparticles. Magnetic nanoparticles were prepared by a chemical precipitation of ferric and ferrous chloride salts in the presence of a strong basic solution. PLGA and PLGA-PEG copolymers were prepared by ring opening polymerization of lactide (LA) and glycolide (GA) (mole ratio of LA: GA 3:1) with or without polyethylene glycol (PEG). Amoxicillin loaded magnetic PLGA and PLGA-PEG nanoparticles were prepared by an emulsion-evaporation process (o/w). Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) photomicrographs showed that the magnetic nanoparticles have the mean diameter within the range of 65-260 nm also they were almost spherical in shape. Magnetic nanoparticles prepared with PLGA showed more efficient entrapment (90%) as compared with PLGA-PEG (48-52%) nanoparticles. In-vitro release of amoxicillin from magnetic PLGA nanoparticles showed that 78% of drug was released over 24 hours. The amount of amoxicillin released from PLGA-PEG s was higher than PLGA.

Keywords

References

  1. Corot, C.; Robert, P.; Idee J. M.; Port, M. Advanced Drug Delivery Reviews 2006, 58, 1471. https://doi.org/10.1016/j.addr.2006.09.013
  2. Dobson, J. Drug Development Research 2006, 67, 55. https://doi.org/10.1002/ddr.20067
  3. Erica L. S. et al. J. Magnetism and Magnetic Materials 2009, 321,1566. https://doi.org/10.1016/j.jmmm.2009.02.087
  4. Mornet, S.; Vasseur, S.; Grasset, F.; Duguet, E. J. Materials Chemistry 2004, 14, 2161. https://doi.org/10.1039/b402025a
  5. Sun, C.; Lee, J. S. H.; Zhang, M. Advanced Drug Delivery Reviews 2008, 60, 1252. https://doi.org/10.1016/j.addr.2008.03.018
  6. Amieva, M. R.; El-Omar, E. M. Gastroenterology 2008, 134, 306. Goddard, A. F.; Logan, R. P. Clin. Br. J. Pharmacol. 2003, 56, 273. https://doi.org/10.1046/j.1365-2125.2003.01941.x
  7. Bardonnet, P. L.; Faivre, V.; Pugh, W. J.; Piffaretti, J. C.; Falson, F. J. Controlled Release 2006, 111, 1. https://doi.org/10.1016/j.jconrel.2005.10.031
  8. Asane, G. S., Rao, Y. M.; Bhatt, J. H.; Shaikh, K. S. Sci. Pharm. 2011, 79, 181. https://doi.org/10.3797/scipharm.1003-03
  9. Dobson, J. Drug Development Research 2006, 67, 55. https://doi.org/10.1002/ddr.20067
  10. Furlan, M.; Kluge, J.; Mazzotti, M.; Lattuad, M. J. Supercritical Fluids 2010, 54, 348. https://doi.org/10.1016/j.supflu.2010.05.010
  11. Ito, R.; Machida, Y.; Sannan, T. Int. J. Pharm. 1990, 61, 109. https://doi.org/10.1016/0378-5173(90)90049-A
  12. Fujimori, J. Y.; Machida, T. STP Pharma. Sci. 1994, 4, 425.
  13. Groning, R.; Berntgen, M. Pharmazie 1996, 51, 328.
  14. Arvanitoyannis, I.; Nakayama, A.; Kawasaki, N.; Yamamoto, N. Polymer 1995, 36, 2947. https://doi.org/10.1016/0032-3861(95)94344-S
  15. Sarsia-ard, M.; Molloy, R.; Molloy, J.; Siripitayananon, J.; Sriyai, M. Polym. Int. 2001, 50, 891. https://doi.org/10.1002/pi.713
  16. Can, K.; Ozmen, M.; Ersoz, M. Biointerfaces 2009, 71, 154. https://doi.org/10.1016/j.colsurfb.2009.01.021
  17. Salehi, R.; Arsalani, N.; Davaran, S.; Entezami, A. A. J. Biomed Mater. Res. A 2009, 89, 919.
  18. Rosca, I. D. J. Control Release 2004, 99, 271 https://doi.org/10.1016/j.jconrel.2004.07.007
  19. Davaran, S.; Asgari, D.; Rashidi, M.; Salehi, R.; Omidi, Y. Journal of Applied Polymer Science 2011, 119, 2635. https://doi.org/10.1002/app.32858
  20. Gupta, A. J.; Gupta, M. Biomaterials 2005, 26, 3995. https://doi.org/10.1016/j.biomaterials.2004.10.012
  21. Liu, Z.; Lu, W.; Qian, L.; Zhang, X.; Zeng, P.; Pan, J. J. Controlled Release 2005, 102, 135. https://doi.org/10.1016/j.jconrel.2004.06.022

Cited by

  1. <i>In Vitro</i> Studies of NIPAAM-MAA-VP Copolymer-Coated Magnetic Nanoparticles for Controlled Anticancer Drug Release* vol.03, pp.04, 2013, https://doi.org/10.4236/jeas.2013.34013
  2. Synthesis and Physicochemical Characterization of Biodegradable Star-Shaped Poly Lactide-Co-Glycolide-<i>β</i>-Cyclodextrin Copolymer Nanoparticles Containing Albumin vol.03, pp.01, 2014, https://doi.org/10.4236/anp.2014.31003
  3. Co-delivery of pemetrexed and miR-21 antisense oligonucleotide by lipid-polymer hybrid nanoparticles and effects on glioblastoma cells vol.43, pp.1, 2017, https://doi.org/10.1080/03639045.2016.1200069
  4. Depot injectable atorvastatin biodegradable in situ gel: development, optimization, in vitro, and in vivo evaluation vol.10, pp.None, 2016, https://doi.org/10.2147/dddt.s98078
  5. Chemotherapy of Breast Cancer Cells Using Novel pH-Responsive Cellulose-Based Nanocomposites vol.9, pp.1, 2012, https://doi.org/10.15171/apb.2019.015
  6. Development and Optimization of Alendronate Sodium Loaded PLGA Nanoparticles by Central Composite Design vol.27, pp.9, 2012, https://doi.org/10.1007/s13233-019-7119-z
  7. Targeting kidneys by superparamagnetic allopurinol loaded chitosan coated nanoparticles for the treatment of hyperuricemic nephrolithiasis vol.27, pp.2, 2012, https://doi.org/10.1007/s40199-019-00300-4
  8. Novel cationic cellulose-based nanocomposites for targeted delivery of methotrexate to breast cancer cells vol.57, pp.2, 2012, https://doi.org/10.1080/10601325.2019.1673174
  9. Central Composite Design for Optimization of Zoledronic Acid Loaded PLGA Nanoparticles vol.15, pp.1, 2012, https://doi.org/10.1007/s12247-018-9365-6
  10. Neurite Extension and Orientation of Spiral Ganglion Neurons Can Be Directed by Superparamagnetic Iron Oxide Nanoparticles in a Magnetic Field vol.16, pp.None, 2021, https://doi.org/10.2147/ijn.s313673