DOI QR코드

DOI QR Code

Protein Analysis Using a Combination of an Online Monolithic Trypsin Immobilized Enzyme Reactor and Collisionally-Activated Dissociation/Electron Transfer Dissociation Dual Tandem Mass Spectrometry

  • Hwang, Hyo-Jin (Department of Chemistry, Sogang University) ;
  • Cho, Kun (Department of Chemistry, Sogang University) ;
  • Kim, Jin-Young (Division of Mass Spectrometry Research, Korea Basic Science Institute) ;
  • Kim, Young-Hwan (Division of Mass Spectrometry Research, Korea Basic Science Institute) ;
  • Oh, Han-Bin (Department of Chemistry, Sogang University)
  • Received : 2012.06.16
  • Accepted : 2012.07.06
  • Published : 2012.10.20

Abstract

We demonstrated the combined applications of online protein digestion using trypsin immobilized enzyme reactor (IMER) and dual tandem mass spectrometry with collisionally activated dissociation (CAD) and electron transfer dissociation (ETD) for tryptic peptides eluted through the trypsin-IMER. For the trypsin-IMER, the organic and inorganic hybrid monolithic material was used. By employing the trypsin-IMER, the long digestion time could be saved with little or no sacrifice of the digestion efficiency, which was demonstrated for standard protein samples. For three model proteins (cytochrome c, carbonic anhydrase, and bovine serum albumin), the tryptic peptides digested by the IMER were analyzed using LC-MS/MS with the dual application of CAD and ETD. As previously shown by others, the dual application of CAD and ETD increased the sequence coverage in comparison with CAD application only. In particular, ETD was very useful for the analysis of highly-protontated peptide cations, e.g., ${\geq}3+$. The combination approach provided the advantages of both trypsin-IMER and CAD/ETD dual tandem mass spectrometry applications, which are rapid digestion (i.e., 10 min), good digestion efficiency, online coupling of trypsin-IMER and liquid chromatography, and high sequence coverage.

Keywords

References

  1. Aebersold, R.; Mann, M. Nature 2003, 422, 198. https://doi.org/10.1038/nature01511
  2. Yates, J. R. Biotechniques 2004, 36, 917.
  3. Han, X.; Aslanian, A.; Yates, J. R. Curr. Opin. Chem. Biol. 2008, 12, 483. https://doi.org/10.1016/j.cbpa.2008.07.024
  4. Fenn, J. B.; Mann, M.; Meng, C. K.; Wong, S. F.; Whitehouse, C. M. Science 1989, 246, 64. https://doi.org/10.1126/science.2675315
  5. Karas, M.; Bachmann, D.; Hillenkamp, F. Anal. Chem. 1985, 57, 2935. https://doi.org/10.1021/ac00291a042
  6. Tanaka, K.; Waki, H.; Ido, Y.; Akita, S.; Yoshida, Y.; Yoshida, T. Rapid Commun. Mass Spectrom. 1988, 2, 151. https://doi.org/10.1002/rcm.1290020802
  7. Shin, M.; Kim, H. J. Bull. Korean Chem. Soc. 2011, 32, 1183. https://doi.org/10.5012/bkcs.2011.32.4.1183
  8. Ha, M.; In, Y.; Maeng, H.; Zee, O. P.; Lee, J.; Kim, Y. Mass Spectrom. Lett. 2011, 2, 61. https://doi.org/10.5478/MSL.2011.2.3.061
  9. Park, E.; Song, J. S.; Kim, H. J. Bull. Korean Chem. Soc. 2012, 33, 987. https://doi.org/10.5012/bkcs.2012.33.3.987
  10. So, H. R.; Han, S. Y.; Oh, H. B. J. Am. Soc. Mass Spectrom. in press (2012).
  11. Takáts, Z.; Wiseman, J. M.; Gologan, B.; Cooks, R. G. Science 2004, 306, 471. https://doi.org/10.1126/science.1104404
  12. Takáts, Z.; Wiseman, J. M.; Cooks, R. G. J. Mass Spectrom. 2005, 40, 1261. https://doi.org/10.1002/jms.922
  13. Henderson, S. C.; Valentine, S. J.; Counterman, A. E.; Clemmer, D. E. Anal. Chem. 1999, 71, 291. https://doi.org/10.1021/ac9809175
  14. Hudgins, R. R.; Jarrold, M. F. J. Am. Chem. Soc. 1999, 121, 3494. https://doi.org/10.1021/ja983996a
  15. Wyttenback, T.; Kemper, P. R.; Bowers, M. T. Int. J. Mass Spectrom. 2001, 212, 12.
  16. Kanu, A. B.; Dvivedi, P.; Tam, M.; Matz, L.; Hill, H. H. J. Mass Spectrom. 2008, 43, 1. https://doi.org/10.1002/jms.1383
  17. Purves, R. W.; Guevremont, R.; Day, S.; Pipich, C. W.; Matyjaszczyk, M. S. Rev. Sci. Instrum. 1989, 69, 4904.
  18. Caldwell, R. L.; Caprioli, R. M. Mol. Cell Proteomics 2005, 4, 394. https://doi.org/10.1074/mcp.R500006-MCP200
  19. McDonnell, L. A.; Heeren, R. M. Mass Spectrom. Rev. 2007, 26, 606. https://doi.org/10.1002/mas.20124
  20. Douglas, D. J.; Frank, A. J.; Mao, D. Mass Spectrom. Rev. 2005, 24, 1. https://doi.org/10.1002/mas.20004
  21. Mararov, A. Anal. Chem. 2000, 72, 1156. https://doi.org/10.1021/ac991131p
  22. Hu, Q.; Noll, R. J.; Li, H.; Hardman, M.; Graham, R. G. J. Mass Spectrom. 2005, 40, 430. https://doi.org/10.1002/jms.856
  23. Sze, S. K.; Ge, Y.; Oh, H. B.; McLafferty, F. W. Proc. Nat'l. Acad. Sci. USA 2002, 99, 1774. https://doi.org/10.1073/pnas.251691898
  24. Charlebois, J. P.; Patrie, S. M.; Kelleher, N. L. Anal. Chem. 2003, 75, 3263. https://doi.org/10.1021/ac020690k
  25. Gygi, S. P.; Rist, B.; Gerber, S. A.; Turecek, F.; Gelb, M. H.; Aebersold, R. Nat. Biotech. 1999, 17, 994. https://doi.org/10.1038/13690
  26. Ross, P. L.; Huang, Y. N.; Marchese, J. N.; Williamson, B.; Parker, K.; Hattan, S.; Khainovskim N.; Pillai, S.; Dey, S.; Daniels, S.; Purkayastha, S.; Juhasz, P.; Martin, S.; Bartlet-Jones, M.; He, F.; Jacobson, A.; Pappin, D. J. Mol. Cell. Proteomics 2004, 3, 1154. https://doi.org/10.1074/mcp.M400129-MCP200
  27. Zubarev, R. A.; Kelleher, N. L.; McLafferty, F. W. J. Am. Chem. Soc. 1998, 120, 3265. https://doi.org/10.1021/ja973478k
  28. Zubarev, R. A.; Horn, D. M.; Fridriksson, E. K.; Kelleher, N. L.; Kruger, N. A.; Lewis, M. A. Carperter, B. K.; McLafferty, F. W. Anal. Chem. 2000, 72, 563. https://doi.org/10.1021/ac990811p
  29. Lee, S. Y.; Han, S. Y.; Lee, T. G.; Lee, D. H.; Chung, G. S.; Oh, H. B. J. Am. Soc. Mass Spectrom. 2006, 17, 536. https://doi.org/10.1016/j.jasms.2005.12.004
  30. Yim, Y. H.; Kim, B. J.; Ahn, S. H.; So, H. Y.; Lee, S. Y.; Oh, H. B. Rapid Commun. Mass Spectrom. 2006, 20, 1918. https://doi.org/10.1002/rcm.2533
  31. Lee, S. Y.; Chung, G. S.; Kim, J. D.; Oh, H. B. Rapid Commun. Mass Spectrom. 2006, 20, 3167. https://doi.org/10.1002/rcm.2708
  32. Lee, S. Y.; Park, S. J.; Ahn, S. H.; Oh, H. B. Int. J. Mass Spectrom. 2009, 279, 47. https://doi.org/10.1016/j.ijms.2008.10.008
  33. Cooper, H. J.; Hakansson, K.; Marshall, A. G. Mass Spectrom. Rev. 2005, 24, 201.
  34. Zubarv, R. A. Mass Spectrom. Rev. 2003, 22, 57. https://doi.org/10.1002/mas.10042
  35. Syka, J. E. P.; Coon, J. J.; Schroeder, M. J.; Shabanowitz, J.; Hunt, D. F. Proc. Nat'l Acad. Sci. USA 2004, 101, 9528. https://doi.org/10.1073/pnas.0402700101
  36. McLuckey, S. A.; Stephenson, J. L. Mass Spectrom. Rev. 1998, 17, 369. https://doi.org/10.1002/(SICI)1098-2787(1998)17:6<369::AID-MAS1>3.0.CO;2-J
  37. Good, D. M.; Wirtala, M.; McAlister, G. C.; Coon, J. J. Mol. Cell Proteomics 2007, 6, 1942. https://doi.org/10.1074/mcp.M700073-MCP200
  38. Swaney, D. L.; McAlister, G. C.; Coon, J. J. Nat. Methods 2008, 5, 959. https://doi.org/10.1038/nmeth.1260
  39. Kelleher, N. L.; Zubarev, R. A.; Bush, K.; Furie, B.; Furie, B. C.; McLafferty, F. W.; Walsh, C. T. Anal. Chem. 1999, 4250.
  40. Mikesh, L. M.; Ueberheide, B.; Chi, A.; Coon, J. J.; Syka, J. E. P.; Shabanowitz, J.; Hunt, D. F. Biochim. Biophys. Acta 2006, 1764, 1811. https://doi.org/10.1016/j.bbapap.2006.10.003
  41. Chi, A.; Huttenhower, C.; Geer, L. Y.; Coon, J. J.; Syka, J. E. P.; Bai, D. L.; Shabonowitz, J.; Burke, D. J.; Troyanskaya, O. G.; Hunt, D. F. Proc. Nat'l Acad. Sci. USA 2007, 104, 2193. https://doi.org/10.1073/pnas.0607084104
  42. Molina, H.; Horn, D. M.; Tang, N.; Mathivanan, S.; Pandey, A. Proc. Nat'l Acad. Sci. USA 2007, 104, 2199. https://doi.org/10.1073/pnas.0611217104
  43. Catalina, M. I.; Koeleman, C. A. M.; Deelder, A. M.; Wuhrer, M. Rapid Commun. Mass Spectrom. 2007, 21, 1053. https://doi.org/10.1002/rcm.2929
  44. Wu, S.-L.; Hühmer, A. F. R.; Hao, Z.; Karger, B. L. J. Proteome Res. 2007, 6, 4230. https://doi.org/10.1021/pr070313u
  45. Viner, R. I.; Zhang, T.; Second, T.; Zabrouskov, V. J. Proteomics 2009, 72, 874. https://doi.org/10.1016/j.jprot.2009.02.005
  46. Massolini, G.; Calleri, E. J. Sep. Sci. 2005, 28, 7. https://doi.org/10.1002/jssc.200401941
  47. Ma, J.; Zhang, L.; Liang, Z.; Shan, Y.; Zhang, Y. Trends Anal. Chem. 2011, 30, 691. https://doi.org/10.1016/j.trac.2010.12.008
  48. Guibault, G. Modern Monographs in Analytical Chemistry II; Marcel Dekker Inc.: New York, 1984.
  49. Krogh, T. N.; Berg, T.; Hojrup, P. Anal. Biochem. 1999, 274, 153. https://doi.org/10.1006/abio.1999.4254
  50. Nicoli, R.; Rudaz, S.; Stella, C.; Veuthey, J.-L. J. Chromatogr. A 2009, 1216, 2695. https://doi.org/10.1016/j.chroma.2008.10.046
  51. Thelohan, S.; Jadaud, P.; Wainer, I. W. Chromatographia 1989, 28, 551. https://doi.org/10.1007/BF02260675
  52. Wang, S.; Regnier, F. E. J. Chromatogr. A 2001, 913, 429. https://doi.org/10.1016/S0021-9673(01)00604-5
  53. Slysz, G. W.; Schriemer, D. C. Rapid Commun. Mass Spectrom. 2003, 17, 1044. https://doi.org/10.1002/rcm.1022
  54. Hjerten, S.; Liao, J. L.; Zhang, R. J. Chromatogr. 1989, 473, 273. https://doi.org/10.1016/S0021-9673(00)91309-8
  55. Svec, F. J. Sep. Sci. 2004, 27, 747. https://doi.org/10.1002/jssc.200401721
  56. Petro, M.; Svec, F.; Fréchet, J. M. J. Biotech. Bioeng. 1996, 48, 355.
  57. Josic, D.; Buchacher, A.; Jungbauer, A. J. Chromatogr. B 2001, 752, 191. https://doi.org/10.1016/S0378-4347(00)00499-0
  58. Calleri, E.; Temporini, C.; Perani, E.; Stella, C.; Rudaz, S.; Lubda, D.; Mellerio, G.; Veuthey, J. L.; Caccialanza, G.; Massolini, G. J. Chromatogr. A 2004, 1045, 99. https://doi.org/10.1016/j.chroma.2004.06.034
  59. Kato, M.; Inuzuka, K.; Sakai-Kato, K.; Toyo'oka, T. Anal. Chem. 2005, 77, 1813. https://doi.org/10.1021/ac048388u
  60. Dulay, M. T.; Bac, Q. J.; Zare, R. N. Anal. Chem. 2005, 77, 4604.
  61. Besanger, T. R.; Hodgson, R. J.; Green, J. R. A.; Brennan, J. D. Anal. Chim. Acta 2006, 564, 106. https://doi.org/10.1016/j.aca.2005.12.066
  62. Ma, J.; Liang, Z.; Qiao, X.; Deng, Q.; Tao, D.; Zhang, L.; Zhang, Y. Anal. Chem. 2008, 80, 2949. https://doi.org/10.1021/ac702343a
  63. Haynes, J. D.; Malik, A. Anal. Chem. 2000, 72, 4090. https://doi.org/10.1021/ac000120p
  64. Colon, H.; Zhang, X.; Murphy, J. K.; Rivera, J. G.; Colon, L. A. Chem. Commun. 2005, 22, 2826.
  65. Yan, L. J.; Zhang, Q. H.; Zhang, J.; Zhang, L. Y.; LI, T.; Feng, Y. Q.; Zhang, L. H.; Zhang, W. B.; Zhang, Y. K. J. Chromatogr. A 2004, 1046, 255. https://doi.org/10.1016/j.chroma.2004.06.024
  66. Yin, H.; Killeen, K.; Brenne, R.; Sobek, D.; Werlich, M.; van de Goor, T. Anal. Chem. 2005, 77, 527. https://doi.org/10.1021/ac049068d
  67. Bond, J. S. Commercially Available Proteases, Appendix II. In: Proteolytic Enzymes, A Practical Approach. Beynon, R. J., Bond, J. S., Eds.; IRL Press, Oxford, U.K. 240, 1989.
  68. Feng, S.; Ye, M.; Jiang, X.; Jin, W.; Zou, H. J. Proteome Res. 2006, 5, 422. https://doi.org/10.1021/pr0502727
  69. Klammer, A. A.; MacCoss, M. J. J. Proteome Res. 2006, 5, 695. https://doi.org/10.1021/pr050315j
  70. Hakansson, K.; Cooper, H. J.; Emmett, M. R.; Costello, C. E.; Marshall, A. G.; Nilsson, C. L. Anal. Chem. 2001, 73, 4530. https://doi.org/10.1021/ac0103470
  71. Swaney, D. L.; McAlister, G. C.; Wirtala, M.; Schwartz, J. C.; Syka, J. E. P.; Coon, J. J. Anal. Chem. 2007, 79, 477. https://doi.org/10.1021/ac061457f
  72. Oh, H. B.; Breuker, K.; Sze, S. K.; Ying, G.; Carpenter, B. K.; McLafferty, F. W. Proc. Natl. Acad. Sci. USA 2002, 99, 15863. https://doi.org/10.1073/pnas.212643599
  73. Oh, H. B.; McLafferty, F. W. Bull. Korean Chem. Soc. 2006, 27, 389. https://doi.org/10.5012/bkcs.2006.27.3.389
  74. Park, S. J.; Ahn, H. K.; Lee, S. Y.; Han, S. Y.; Rhee, B. K.; Oh, H. B. Rapid Commun. Mass Spectrom. 2009, 23, 3609. https://doi.org/10.1002/rcm.4184

Cited by

  1. Maillard Proteomics: Opening New Pages vol.18, pp.12, 2017, https://doi.org/10.3390/ijms18122677
  2. Density Functional Theory (DFT) Study of Gas-phase O.C Bond Dissociation Energy of Models for o-TEMPO-Bz-C(O)-Peptide: A Model Study for Free Radical Initiated Peptide Sequencing vol.35, pp.3, 2012, https://doi.org/10.5012/bkcs.2014.35.3.770