References
- Caseri, W. Macromol. Rapid. Commun. 2000, 21, 705. https://doi.org/10.1002/1521-3927(20000701)21:11<705::AID-MARC705>3.0.CO;2-3
- Beecroft, L. L.; Ober, C. K. Chem. Mater. 1997, 9, 1302. https://doi.org/10.1021/cm960441a
- Sun, Y. P.; Rollins, H. Chem. Phys. Lett. 1998, 288, 585. https://doi.org/10.1016/S0009-2614(98)00346-7
- Wang, M.; Zhang, M.; Qian, J.; Zhao, F.; Shen, L.; Scholes, G. D.; Winnik, M. A. Langmuir 2009, 25, 11732. https://doi.org/10.1021/la900614e
- Hoogland, S.; Sukhovatkin, V.; Howard, I.; Cauchi, S.; Levina, L.; Sargent, E. H. Opt. Express 2006, 14, 3273. https://doi.org/10.1364/OE.14.003273
- Huynh, W. U.; Dittmer, J. J.; Alivisatos, A. P. Science 2002, 295, 2425. https://doi.org/10.1126/science.1069156
- Rajesh; Ahuja, T.; Kumar, D. Sens. Act. B 2009, 136, 275. https://doi.org/10.1016/j.snb.2008.09.014
- Kundu, S.; Lee, H.; Liang, H. Inorg. Chem. 2009, 48, 121. https://doi.org/10.1021/ic801791u
- Ma, N.; Yang, J.; Stewart, K. M.; Kelley, S. O. Langmuir 2007, 23, 12783. https://doi.org/10.1021/la7017727
- Li, Z.; Du, Y.; Zhang, Z.; Pang, D. React. Funct. Polym. 2003, 55, 35. https://doi.org/10.1016/S1381-5148(02)00197-9
- Oluwafemi, O. S.; Adeyemi, O. O. Mater. Lett. 2010, 64, 2310. https://doi.org/10.1016/j.matlet.2010.07.021
- Kim, Y. Y.; Walsh, D. Nanoscale 2010, 2, 240. https://doi.org/10.1039/b9nr00194h
- Byrne, S. J.; Williams, Y.; Davies, A.; Corr, S. A.; Rakovich, A.; Gun'ko, Y. K.; Rakovich, Y. P.; Donegan, J. F.; Volkov, Y. Small 2007, 3, 1152. https://doi.org/10.1002/smll.200700090
- Mozafari, M.; Moztarzadeh, F. J. Colloid. Interface. Sci. 2010, 351, 442. https://doi.org/10.1016/j.jcis.2010.08.030
- Anh, N. T.; Phu, D. V.; Duy, N. N.; Du, B. D.; Hien, N. Q. Radiat. Phys. Chem. 2010, 79, 405. https://doi.org/10.1016/j.radphyschem.2009.11.013
- Jaouen, V.; Brayner, R.; Lantiat, D.; Steunou, N.; Coradin, T. Nanotechnology 2010, 21, 185605. https://doi.org/10.1088/0957-4484/21/18/185605
- Wang, C. H.; Hsu, Y. S.; Peng, C. A. Biosens. Bioelectron 2008, 24, 1012. https://doi.org/10.1016/j.bios.2008.08.009
- Bardajee, G. R.; Hooshyar, Z.; Rostami, I. Colloids. Surf. B 2011, 88, 202. https://doi.org/10.1016/j.colsurfb.2011.06.032
- Gacesa, P. Carbohydr. Polym. 1988, 8, 161. https://doi.org/10.1016/0144-8617(88)90001-X
- Guiseley, K. B. Enzyme. Microb. Technol. 1989, 11, 706. https://doi.org/10.1016/0141-0229(89)90119-1
- Rangaraj, G.; Kishore, N.; Dhanalekshmi, U. M.; Raja, M. D.; Senthilkumar, C.; Reddy, P. N. J. Pharm. Sci. Res. 2010, 2, 77.
- Li, P.; Dai, Y. N.; Zhang, J. P.; Wang, A. Q.; Wei, Q. Int. J. Biomed. Sci. 2008, 4, 221.
- Chenoweth, M. B. Ann. Surg. 1948, 127, 1173. https://doi.org/10.1097/00000658-194806000-00006
- Shilpa, A.; Agrawal, S. S.; Ray, A. R. J. Macromol. Sci. Polym. Rev. 2003, 43, 187. https://doi.org/10.1081/MC-120020160
- Li, Z.; Chen, P.; Xu, X.; Ye, X.; Wang, J. Mater. Sci. Eng. C 2009, 29, 2250. https://doi.org/10.1016/j.msec.2009.05.010
- Lai, S.; Chang, X.; Fu, C. Microchim. Acta 2009, 165, 39. https://doi.org/10.1007/s00604-008-0094-2
- Jiang, R.; Zhu, H.; Li, X.; Xiao, L. Chem. Eng. J. 2009, 152, 537. https://doi.org/10.1016/j.cej.2009.05.037
- Haug, A. Acta. Chem. Scand. 1961, 15, 1794. https://doi.org/10.3891/acta.chem.scand.15-1794
- Grant, G. T.; Morris, E. R.; Rees, D. A.; Smith, P. J. C.; Thom, D. FEBS Lett. 1973, 32, 195. https://doi.org/10.1016/0014-5793(73)80770-7
- Treml, H.; Woelki, S.; Kohler, H. H. Chem. Phys. 2003, 293, 341. https://doi.org/10.1016/S0301-0104(03)00336-7
- Luccio, T. D.; Laera, A. M.; Tapfer, L. J. Phys. Chem. B 2006, 110, 12603.
- Nagasawa, N.; Mitomo, H.; Yoshii, F.; Kume, T. Polym. Degrad. Stab. 2000, 69, 279. https://doi.org/10.1016/S0141-3910(00)00070-7
- Bhattacharjee, B.; Ganguli, D.; Chaudhuri, S. J. Nanopart. Res. 2002, 4, 225. https://doi.org/10.1023/A:1019926512111
- Pinna, N.; Weiss, K.; Urban, J.; Pileni, M. P. Adv. Mater. 2001, 13, 261. https://doi.org/10.1002/1521-4095(200102)13:4<261::AID-ADMA261>3.0.CO;2-X
- Sartori, C.; Finch, D. S.; Ralph, B. Polymer 1997, 38, 43. https://doi.org/10.1016/S0032-3861(96)00458-2
- Sakugawa, K.; Ikeda, A.; Takemura, A.; Ono, H. J. Appl. Polym. Sci. 2004, 93, 1372. https://doi.org/10.1002/app.20589
- Fang, D.; Liu, Y.; Jiang, S.; Nie, J.; Ma, G. Carbohydr. Polym. 2011, 85, 276. https://doi.org/10.1016/j.carbpol.2011.01.054
- Fabia, J.; Slusarczyk, C. Z.; Gawlowski, A. Fibres. Text. East Eur. 2005, 13, 114.
- Li, Y.; Liu, E. C. Y.; Pickett, N.; Skabara, P. J.; Cummins, S. S.; Ryley, S.; Sutherland, A. J.; O'Brien, P. J. Mater. Chem. 2005, 12, 1238.
- Trandafilovic, L. V.; Djokovi , V.; Bibic, N.; Georges, M. K.; Radhakrishnan, T. Opt. Materials 2008, 30, 1208. https://doi.org/10.1016/j.optmat.2007.05.050
- Radhakrishnan, T.; Georges, M. K.; Nair, P. S.; Luyt, A. S.; Djokovi , V. Colloid Polym. Sci. 2008, 286, 683. https://doi.org/10.1007/s00396-007-1819-1
- Wang, H.; Fang, P.; Chen, Z.; Wang, S. Appl. Surf. Sci. 2007, 253, 8495. https://doi.org/10.1016/j.apsusc.2007.04.020
Cited by
- Preparation of Alginate Nanofiber via Electrospinning and Crosslinking vol.50, pp.5, 2013, https://doi.org/10.12772/TSE.2013.50.323
- Synthesis and Optical Characteristics of PAM/HgS Nanocomposites vol.35, pp.4, 2014, https://doi.org/10.5012/bkcs.2014.35.4.1077
- Evaluation extracellular matrix–chitosan composite films for wound healing application vol.26, pp.8, 2015, https://doi.org/10.1007/s10856-015-5551-y
- Enhancement in the stability of alginate gels prepared with mixed solution of divalent ions using a diffusion through dialysis tube (DTDT) approach vol.54, pp.5, 2017, https://doi.org/10.1080/10601325.2017.1294452
- -doped CdS nanoparticles vol.7, pp.84, 2017, https://doi.org/10.1039/C7RA11011A
- Biosynthesis and Characterization of Silver Nanoparticles Using Sodium Alginate from the Invasive Macroalga Sargassum muticum vol.8, pp.2, 2018, https://doi.org/10.1007/s12668-018-0518-3
- Alginate-derived solid acid catalyst for esterification of low-cost palm fatty acid distillate vol.106, pp.None, 2012, https://doi.org/10.1016/j.enconman.2015.10.018
- Facile preparation of iron loaded calcium alginate nanocarriers and study of controlled release of iron vol.5, pp.6, 2012, https://doi.org/10.1016/j.jece.2017.10.019
- Bioinspired, Manganese-Chelated Alginate–Polydopamine Nanomaterials for Efficient in Vivo T1-Weighted Magnetic Resonance Imaging vol.10, pp.6, 2018, https://doi.org/10.1021/acsami.7b13396
- Anti-inflammatory potential of alginic acid from Sargassum horneri against urban aerosol-induced inflammatory responses in keratinocytes and macrophages vol.160, pp.None, 2018, https://doi.org/10.1016/j.ecoenv.2018.05.024
- Alginate hydrogels incorporating neomycin or propolis as potential dressings for diabetic ulcers: Structure, swelling, and antimicrobial barrier properties vol.30, pp.10, 2019, https://doi.org/10.1002/pat.4679
- Effect of electrical conductivity studies for CuS nanofillers mixed magnesium ion based PVA-PVP blend polymer solid electrolyte vol.572, pp.None, 2012, https://doi.org/10.1016/j.physb.2019.07.049
- Physical, mechanical and in vitro biological evaluation of synthesized biosurfactant-modified silanated-gelatin/sodium alginate/45S5 bioglass bone tissue engineering scaffolds vol.31, pp.1, 2012, https://doi.org/10.1080/09205063.2019.1675226
- Influence of Process Parameters in Graphene Oxide Obtention on the Properties of Mechanically Strong Alginate Nanocomposites vol.13, pp.5, 2020, https://doi.org/10.3390/ma13051081
- Engineering Quantum Dots with Ionic Liquid: A Multifunctional White Light Emitting Hydrogel for Enzyme Packaging vol.8, pp.8, 2012, https://doi.org/10.1002/adom.201902022
- Removal of anionic dye Congo red from aqueous environment using polyvinyl alcohol/sodium alginate/ZSM-5 zeolite membrane vol.10, pp.1, 2012, https://doi.org/10.1038/s41598-020-72398-5
- Alginate/Bioactive Glass Beads: Synthesis, Morphological and Compositional Changes Caused by SBF Immersion Method vol.24, pp.4, 2012, https://doi.org/10.1590/1980-5373-mr-2020-0587
- TiO2-ZnO composites fabricated via sonication assisted with gelatin for potential use in Rhodamine B degradation vol.32, pp.2, 2021, https://doi.org/10.1007/s10854-020-05013-y
- Biocomposite hydrogel beads from glutaraldehyde-crosslinked phytochemicals in alginate for effective removal of methylene blue vol.329, pp.None, 2012, https://doi.org/10.1016/j.molliq.2021.115579
- Sodium alginate/bismuth (III) oxide composites for γ‐ray shielding applications vol.138, pp.19, 2012, https://doi.org/10.1002/app.50369
- Evaluation of different covalent crosslinking agents into valsartan-loaded sericin and alginate particles for modified release vol.390, pp.None, 2012, https://doi.org/10.1016/j.powtec.2021.05.091
- Development of textile-based sodium alginate and chitosan hydrogel dressings vol.70, pp.13, 2021, https://doi.org/10.1080/00914037.2020.1765364
- Structural, optical, morphological and mechanical studies of polyethylene oxide/sodium alginate blend containing multi-walled carbon nanotubes vol.15, pp.None, 2012, https://doi.org/10.1016/j.jmrt.2021.10.117
- Recovery of dysprosium by biosorption onto a biocomposite from sericin and alginate vol.44, pp.None, 2012, https://doi.org/10.1016/j.jwpe.2021.102388
- Catalytic activity of silver nanocomposite alginate beads for degradation of basic dye: Kinetic and isothermal study vol.36, pp.1, 2012, https://doi.org/10.1002/aoc.6490
- Fabrication of KDF-loaded chitosan-oligosaccharide-encapsulated konjac glucomannan/sodium alginate/zeolite P microspheres with sustained-release antimicrobial activity vol.1250, pp.p1, 2012, https://doi.org/10.1016/j.molstruc.2021.131682
- Surface modification of Ag3PO4 using the alginate for highly active photocatalyst under visible light irradiation vol.28, pp.None, 2012, https://doi.org/10.1016/j.surfin.2021.101672