DOI QR코드

DOI QR Code

One Pot Synthesis and Characterization of Alginate Stabilized Semiconductor Nanoparticles

  • Sundarrajan, Parani (Department of Inorganic Chemistry, University of Madras, Maraimalai (Guindy) Campus) ;
  • Eswaran, Prabakaran (Department of Inorganic Chemistry, University of Madras, Maraimalai (Guindy) Campus) ;
  • Marimuthu, Alexander (Department of Inorganic Chemistry, University of Madras, Maraimalai (Guindy) Campus) ;
  • Subhadra, Lakshmi Baddireddi (Tissue Culture and Drug Discovery Laboratory, Centre for Biotechnology, Anna University) ;
  • Kannaiyan, Pandian (Department of Inorganic Chemistry, University of Madras, Maraimalai (Guindy) Campus)
  • Received : 2012.05.30
  • Accepted : 2012.07.05
  • Published : 2012.10.20

Abstract

Uniform and well dispersed metal sulfide semiconductor nanoparticles incorporated into matrices of alginate biopolymer are prepared by using a facile in situ method. The reaction was accomplished by impregnation of alginate with divalent metal ions followed by reaction with thioacetamide. XRD analysis showed that the nanoparticles incorporated in the polymer matrix were of cubic structure with the average particle diameter of 1.8 to 4.8 nm. Field emission scanning electron microscopy and high resolution transmission electron microscopy images indicated that the particles were well dispersed and distributed uniformly in the matrices of alginate polymer. FT-IR spectra confirmed the presence of alginate in the nanocomposite. The crystalline nature and thermal stability of the alginate polymer was found to be influenced by the nature of the divalent metal ions used for the synthesis. The proposed method is considered to be a simple and greener approach for large scale synthesis of uniform sized nanoparticles.

Keywords

References

  1. Caseri, W. Macromol. Rapid. Commun. 2000, 21, 705. https://doi.org/10.1002/1521-3927(20000701)21:11<705::AID-MARC705>3.0.CO;2-3
  2. Beecroft, L. L.; Ober, C. K. Chem. Mater. 1997, 9, 1302. https://doi.org/10.1021/cm960441a
  3. Sun, Y. P.; Rollins, H. Chem. Phys. Lett. 1998, 288, 585. https://doi.org/10.1016/S0009-2614(98)00346-7
  4. Wang, M.; Zhang, M.; Qian, J.; Zhao, F.; Shen, L.; Scholes, G. D.; Winnik, M. A. Langmuir 2009, 25, 11732. https://doi.org/10.1021/la900614e
  5. Hoogland, S.; Sukhovatkin, V.; Howard, I.; Cauchi, S.; Levina, L.; Sargent, E. H. Opt. Express 2006, 14, 3273. https://doi.org/10.1364/OE.14.003273
  6. Huynh, W. U.; Dittmer, J. J.; Alivisatos, A. P. Science 2002, 295, 2425. https://doi.org/10.1126/science.1069156
  7. Rajesh; Ahuja, T.; Kumar, D. Sens. Act. B 2009, 136, 275. https://doi.org/10.1016/j.snb.2008.09.014
  8. Kundu, S.; Lee, H.; Liang, H. Inorg. Chem. 2009, 48, 121. https://doi.org/10.1021/ic801791u
  9. Ma, N.; Yang, J.; Stewart, K. M.; Kelley, S. O. Langmuir 2007, 23, 12783. https://doi.org/10.1021/la7017727
  10. Li, Z.; Du, Y.; Zhang, Z.; Pang, D. React. Funct. Polym. 2003, 55, 35. https://doi.org/10.1016/S1381-5148(02)00197-9
  11. Oluwafemi, O. S.; Adeyemi, O. O. Mater. Lett. 2010, 64, 2310. https://doi.org/10.1016/j.matlet.2010.07.021
  12. Kim, Y. Y.; Walsh, D. Nanoscale 2010, 2, 240. https://doi.org/10.1039/b9nr00194h
  13. Byrne, S. J.; Williams, Y.; Davies, A.; Corr, S. A.; Rakovich, A.; Gun'ko, Y. K.; Rakovich, Y. P.; Donegan, J. F.; Volkov, Y. Small 2007, 3, 1152. https://doi.org/10.1002/smll.200700090
  14. Mozafari, M.; Moztarzadeh, F. J. Colloid. Interface. Sci. 2010, 351, 442. https://doi.org/10.1016/j.jcis.2010.08.030
  15. Anh, N. T.; Phu, D. V.; Duy, N. N.; Du, B. D.; Hien, N. Q. Radiat. Phys. Chem. 2010, 79, 405. https://doi.org/10.1016/j.radphyschem.2009.11.013
  16. Jaouen, V.; Brayner, R.; Lantiat, D.; Steunou, N.; Coradin, T. Nanotechnology 2010, 21, 185605. https://doi.org/10.1088/0957-4484/21/18/185605
  17. Wang, C. H.; Hsu, Y. S.; Peng, C. A. Biosens. Bioelectron 2008, 24, 1012. https://doi.org/10.1016/j.bios.2008.08.009
  18. Bardajee, G. R.; Hooshyar, Z.; Rostami, I. Colloids. Surf. B 2011, 88, 202. https://doi.org/10.1016/j.colsurfb.2011.06.032
  19. Gacesa, P. Carbohydr. Polym. 1988, 8, 161. https://doi.org/10.1016/0144-8617(88)90001-X
  20. Guiseley, K. B. Enzyme. Microb. Technol. 1989, 11, 706. https://doi.org/10.1016/0141-0229(89)90119-1
  21. Rangaraj, G.; Kishore, N.; Dhanalekshmi, U. M.; Raja, M. D.; Senthilkumar, C.; Reddy, P. N. J. Pharm. Sci. Res. 2010, 2, 77.
  22. Li, P.; Dai, Y. N.; Zhang, J. P.; Wang, A. Q.; Wei, Q. Int. J. Biomed. Sci. 2008, 4, 221.
  23. Chenoweth, M. B. Ann. Surg. 1948, 127, 1173. https://doi.org/10.1097/00000658-194806000-00006
  24. Shilpa, A.; Agrawal, S. S.; Ray, A. R. J. Macromol. Sci. Polym. Rev. 2003, 43, 187. https://doi.org/10.1081/MC-120020160
  25. Li, Z.; Chen, P.; Xu, X.; Ye, X.; Wang, J. Mater. Sci. Eng. C 2009, 29, 2250. https://doi.org/10.1016/j.msec.2009.05.010
  26. Lai, S.; Chang, X.; Fu, C. Microchim. Acta 2009, 165, 39. https://doi.org/10.1007/s00604-008-0094-2
  27. Jiang, R.; Zhu, H.; Li, X.; Xiao, L. Chem. Eng. J. 2009, 152, 537. https://doi.org/10.1016/j.cej.2009.05.037
  28. Haug, A. Acta. Chem. Scand. 1961, 15, 1794. https://doi.org/10.3891/acta.chem.scand.15-1794
  29. Grant, G. T.; Morris, E. R.; Rees, D. A.; Smith, P. J. C.; Thom, D. FEBS Lett. 1973, 32, 195. https://doi.org/10.1016/0014-5793(73)80770-7
  30. Treml, H.; Woelki, S.; Kohler, H. H. Chem. Phys. 2003, 293, 341. https://doi.org/10.1016/S0301-0104(03)00336-7
  31. Luccio, T. D.; Laera, A. M.; Tapfer, L. J. Phys. Chem. B 2006, 110, 12603.
  32. Nagasawa, N.; Mitomo, H.; Yoshii, F.; Kume, T. Polym. Degrad. Stab. 2000, 69, 279. https://doi.org/10.1016/S0141-3910(00)00070-7
  33. Bhattacharjee, B.; Ganguli, D.; Chaudhuri, S. J. Nanopart. Res. 2002, 4, 225. https://doi.org/10.1023/A:1019926512111
  34. Pinna, N.; Weiss, K.; Urban, J.; Pileni, M. P. Adv. Mater. 2001, 13, 261. https://doi.org/10.1002/1521-4095(200102)13:4<261::AID-ADMA261>3.0.CO;2-X
  35. Sartori, C.; Finch, D. S.; Ralph, B. Polymer 1997, 38, 43. https://doi.org/10.1016/S0032-3861(96)00458-2
  36. Sakugawa, K.; Ikeda, A.; Takemura, A.; Ono, H. J. Appl. Polym. Sci. 2004, 93, 1372. https://doi.org/10.1002/app.20589
  37. Fang, D.; Liu, Y.; Jiang, S.; Nie, J.; Ma, G. Carbohydr. Polym. 2011, 85, 276. https://doi.org/10.1016/j.carbpol.2011.01.054
  38. Fabia, J.; Slusarczyk, C. Z.; Gawlowski, A. Fibres. Text. East Eur. 2005, 13, 114.
  39. Li, Y.; Liu, E. C. Y.; Pickett, N.; Skabara, P. J.; Cummins, S. S.; Ryley, S.; Sutherland, A. J.; O'Brien, P. J. Mater. Chem. 2005, 12, 1238.
  40. Trandafilovic, L. V.; Djokovi , V.; Bibic, N.; Georges, M. K.; Radhakrishnan, T. Opt. Materials 2008, 30, 1208. https://doi.org/10.1016/j.optmat.2007.05.050
  41. Radhakrishnan, T.; Georges, M. K.; Nair, P. S.; Luyt, A. S.; Djokovi , V. Colloid Polym. Sci. 2008, 286, 683. https://doi.org/10.1007/s00396-007-1819-1
  42. Wang, H.; Fang, P.; Chen, Z.; Wang, S. Appl. Surf. Sci. 2007, 253, 8495. https://doi.org/10.1016/j.apsusc.2007.04.020

Cited by

  1. Preparation of Alginate Nanofiber via Electrospinning and Crosslinking vol.50, pp.5, 2013, https://doi.org/10.12772/TSE.2013.50.323
  2. Synthesis and Optical Characteristics of PAM/HgS Nanocomposites vol.35, pp.4, 2014, https://doi.org/10.5012/bkcs.2014.35.4.1077
  3. Evaluation extracellular matrix–chitosan composite films for wound healing application vol.26, pp.8, 2015, https://doi.org/10.1007/s10856-015-5551-y
  4. Enhancement in the stability of alginate gels prepared with mixed solution of divalent ions using a diffusion through dialysis tube (DTDT) approach vol.54, pp.5, 2017, https://doi.org/10.1080/10601325.2017.1294452
  5. -doped CdS nanoparticles vol.7, pp.84, 2017, https://doi.org/10.1039/C7RA11011A
  6. Biosynthesis and Characterization of Silver Nanoparticles Using Sodium Alginate from the Invasive Macroalga Sargassum muticum vol.8, pp.2, 2018, https://doi.org/10.1007/s12668-018-0518-3
  7. Alginate-derived solid acid catalyst for esterification of low-cost palm fatty acid distillate vol.106, pp.None, 2012, https://doi.org/10.1016/j.enconman.2015.10.018
  8. Facile preparation of iron loaded calcium alginate nanocarriers and study of controlled release of iron vol.5, pp.6, 2012, https://doi.org/10.1016/j.jece.2017.10.019
  9. Bioinspired, Manganese-Chelated Alginate–Polydopamine Nanomaterials for Efficient in Vivo T1-Weighted Magnetic Resonance Imaging vol.10, pp.6, 2018, https://doi.org/10.1021/acsami.7b13396
  10. Anti-inflammatory potential of alginic acid from Sargassum horneri against urban aerosol-induced inflammatory responses in keratinocytes and macrophages vol.160, pp.None, 2018, https://doi.org/10.1016/j.ecoenv.2018.05.024
  11. Alginate hydrogels incorporating neomycin or propolis as potential dressings for diabetic ulcers: Structure, swelling, and antimicrobial barrier properties vol.30, pp.10, 2019, https://doi.org/10.1002/pat.4679
  12. Effect of electrical conductivity studies for CuS nanofillers mixed magnesium ion based PVA-PVP blend polymer solid electrolyte vol.572, pp.None, 2012, https://doi.org/10.1016/j.physb.2019.07.049
  13. Physical, mechanical and in vitro biological evaluation of synthesized biosurfactant-modified silanated-gelatin/sodium alginate/45S5 bioglass bone tissue engineering scaffolds vol.31, pp.1, 2012, https://doi.org/10.1080/09205063.2019.1675226
  14. Influence of Process Parameters in Graphene Oxide Obtention on the Properties of Mechanically Strong Alginate Nanocomposites vol.13, pp.5, 2020, https://doi.org/10.3390/ma13051081
  15. Engineering Quantum Dots with Ionic Liquid: A Multifunctional White Light Emitting Hydrogel for Enzyme Packaging vol.8, pp.8, 2012, https://doi.org/10.1002/adom.201902022
  16. Removal of anionic dye Congo red from aqueous environment using polyvinyl alcohol/sodium alginate/ZSM-5 zeolite membrane vol.10, pp.1, 2012, https://doi.org/10.1038/s41598-020-72398-5
  17. Alginate/Bioactive Glass Beads: Synthesis, Morphological and Compositional Changes Caused by SBF Immersion Method vol.24, pp.4, 2012, https://doi.org/10.1590/1980-5373-mr-2020-0587
  18. TiO2-ZnO composites fabricated via sonication assisted with gelatin for potential use in Rhodamine B degradation vol.32, pp.2, 2021, https://doi.org/10.1007/s10854-020-05013-y
  19. Biocomposite hydrogel beads from glutaraldehyde-crosslinked phytochemicals in alginate for effective removal of methylene blue vol.329, pp.None, 2012, https://doi.org/10.1016/j.molliq.2021.115579
  20. Sodium alginate/bismuth (III) oxide composites for γ‐ray shielding applications vol.138, pp.19, 2012, https://doi.org/10.1002/app.50369
  21. Evaluation of different covalent crosslinking agents into valsartan-loaded sericin and alginate particles for modified release vol.390, pp.None, 2012, https://doi.org/10.1016/j.powtec.2021.05.091
  22. Development of textile-based sodium alginate and chitosan hydrogel dressings vol.70, pp.13, 2021, https://doi.org/10.1080/00914037.2020.1765364
  23. Structural, optical, morphological and mechanical studies of polyethylene oxide/sodium alginate blend containing multi-walled carbon nanotubes vol.15, pp.None, 2012, https://doi.org/10.1016/j.jmrt.2021.10.117
  24. Recovery of dysprosium by biosorption onto a biocomposite from sericin and alginate vol.44, pp.None, 2012, https://doi.org/10.1016/j.jwpe.2021.102388
  25. Catalytic activity of silver nanocomposite alginate beads for degradation of basic dye: Kinetic and isothermal study vol.36, pp.1, 2012, https://doi.org/10.1002/aoc.6490
  26. Fabrication of KDF-loaded chitosan-oligosaccharide-encapsulated konjac glucomannan/sodium alginate/zeolite P microspheres with sustained-release antimicrobial activity vol.1250, pp.p1, 2012, https://doi.org/10.1016/j.molstruc.2021.131682
  27. Surface modification of Ag3PO4 using the alginate for highly active photocatalyst under visible light irradiation vol.28, pp.None, 2012, https://doi.org/10.1016/j.surfin.2021.101672