DOI QR코드

DOI QR Code

할당 문제의 최적 알고리즘

The Optimal Algorithm for Assignment Problem

  • 이상운 (강릉원주대학교 멀티미디어공학과)
  • Lee, Sang-Un (Dept. of Multimedia Eng., Gangneung-Wonju National University)
  • 투고 : 2012.05.21
  • 심사 : 2012.08.14
  • 발행 : 2012.09.30

초록

본 논문에서는 할당 문제의 최적해를 간단히 찾을 수 있는 알고리즘을 제안하였다. 일반적으로 할당 문제의 최적해는 Hungarian 알고리즘으로 구한다. 제안된 알고리즘은 Hungarian 알고리즘의 4단계 수행 과정을 1단계로 단축시켰으며, 행과 열의 최소 비용만을 선택하여 비용을 감소시키는 최적화 과정을 거쳐 최적해를 구하였다. 제안된 알고리즘을 27개의 균형 할당 문제와 7개의 불균형 할당 문제에 적용한 결과 유전자 알고리즘으로 찾지 못한 최적해를 찾는데 성공하였다. 제안된 알고리즘은 Hungarian 알고리즘의 수행 복잡도 O($n^3$)을 O(n)으로 향상시켰다. 따라서 제안된 알고리즘은 Hungarian 알고리즘을 대체하여 할당 문제에 일반적으로 적용할 수 있는 알고리즘으로 널리 활용될 수 있을 것이다.

This paper suggests simple search algorithm for optimal solution in assignment problem. Generally, the optimal solution of assignment problem can be obtained by Hungarian algorithm. The proposed algorithm reduces the 4 steps of Hungarian algorithm to 1 step, and only selects the minimum cost of row and column then gets the optimal solution simply. For the 27 balanced and 7 unbalanced assignment problems, this algorithm finds the optimal solution but the genetic algorithm fails to find this values. This algorithm improves the time complexity O($n^3$) of Hungarian algorithm to O(n). Therefore, the proposed algorithm can be general algorithm for assignment problem replace Hungarian algorithm.

키워드

참고문헌

  1. Wikipedia, "Assignment Problem," http://en.wikipedia. org/wiki/Assignment_problem, Wikimedia Foundation Inc., 2008.
  2. Wikipedia, "Hungarian Algorithm," http://en. wikipedia.org/wiki/Hungarian_algorithm, Wikimedia Foundation Inc., 2008.
  3. L. Ntaimo, "Introduction to Mathematical Programming: Operations Research: Transportation and Assignment Problems", Vol. 1, 4th edition, by W. L. Winston and M. Venkataramanan, http://ie.tamu.edu/ INEN420/INEN420_2005Spring/SLIDES/Chapt er 7.pdf, 2005.
  4. K. Kinahan and J. Pryor, "Algorithm Animations for Practical Optimization: A Gentle Introduction," http://optlab-server.sce.carleton.ca/POAnimati ons2007/Default.html, 2007.
  5. D. N. Kumar, "Optimization Methods," http://www.nptel.iitm.ac.in/Courses/Webcourse-contents/II Sc-BANG/OPTIMIZATIONMETHODS/pdf/Modul e_4/M4L3_LN.pdf, IISc, Bangalore, 2008.
  6. Rai Foundation Colleges, "Information Research," Bachelor of Business Administration, Business Administration, http://www.rocw.raifoundation.org/ management/bba/OperationResearch/lecture-not es/, 2008.
  7. S. Noble, "Lectures 15: The Assignment Problem," Department of Mathematical Sciences, Brunel University,http://people.brunel.ac.uk/-mastsd n/combopt/handout8.html, 2000.
  8. A. Dimitrios, P. Konstantinos, S. Nikolaos, and S. Angelo, "Applications of a New Network-enabled Solver for the Assignment Problem in Computeraided Education," Journal of Computer Science, Vol. 1, No. 1, pp. 19-23, 2005. https://doi.org/10.3844/jcssp.2005.19.23
  9. R. M. Berka, "A Tutorial on Network Optimization, "http://home.eunet.cz/berka/o/English/network s/node8.html, 1997.
  10. M. S. Radhakrishnan, "AAOC C222: Optimization," Birla Institute of Technology & Science, http:// discovery.bits-pilani.ac.in/discipline/math/msr/ aaoc222/ppt/assgn1.ppt, 2006.
  11. R. Burkard, M. D. Amico, and S. Martello, "Assignment Problems, http://www.assignment problems.com/HA4applet.htm, SIAM Monographs on Discrete Mathematics and Applications, 2006.
  12. S. C. Niu, "Introduction to Operations Research," http://www.utdallas.edu/-scniu/OPRE-6201/d ocuments/TP2-Initialization.pdf, School of Management, The University of Texas at Dallas, 2004.
  13. W. Snyder, "The Linear Assignment Problem," Department of Electrical and Computer Engineering, North Carolina State University, http://www4. ncsu.edu/-wes/Assignment Problem.pdf,2005.
  14. M. E. Salassi, "AGEC 7123: Operations Research Methods in Agricultural Economics: Standard LP Form of the Generalized Assignment Problem," Department of Agricultural Economics and Agribusiness, Louisiana State University, http://www.agecon.lsu.edu/WebClasses/AGEC_7123/2004-Materials /Ovhd-18.pdf, 2005.
  15. K. Wayne, "Algorithm Design," http://www.cs. princeton.edu/-wayne/kleinberg-tardos/07assign ment.pdf, 2005.
  16. J. Havlicek, "Introduction to Management Science and Operation Research," http://orms.czu.cz/ text/transproblem.html, 2007.
  17. R. Sedgewick and K. Wayne, "Computer Science 226: Data Structures and Algorithms," Princeton University, http://www.cs.princeton.edu/courses/ archive/spr02/cs226/assignments/assign.html, 2002.
  18. J. E. Beasley, "Operations Research and Management Science: OR-Notes," Department of Mathematical Sciences, Brunel University, West London, http:// people.brunel.ac.uk/-mastjjb/jeb/or/contents.h tml, 2004.
  19. D. Doty, "Munkres' Assignment Algorithm: Modified for Rectangular Matrices," KCVU, Murray State University, Dept. of Computer Science and Information Systems, http://www.public.iastate.edu/-ddoty/ Hungarian Algorithm.html, 2008.
  20. G. B. Dantzig, "Linear Programming and Extensions," USAF Project RAND, R-366-PR, The RAND Corporation, Santa Monica, California, U.S., https://www.rand.org/pubs/reports/2007/ R366part2.pdf, 1963.
  21. M. A. Trick, "Network Optimizations for Consultants," http://mat.gsia.cmu.edu/mstc/networks/networ ks.html, 1996.
  22. Optimalon Software, "Transportation Problem (Minimal Cost)," http://www.optimalon.com/ examples/transport.htm,2008.

피인용 문헌

  1. 할당 문제의 단순한 해법 vol.12, pp.5, 2012, https://doi.org/10.7236/jiwit.2012.12.5.141
  2. 그리드형 2차 할당문제 알고리즘 vol.19, pp.4, 2014, https://doi.org/10.9708/jksci.2014.19.4.091