DOI QR코드

DOI QR Code

전기습윤셀 구조를 갖는 플렉서블 디스플레이와 소스 드라이버 설계에 관한 연구

A Study on the Design of the Source Driver and the Flexible Display with an Electrowetting Cell Structure

  • 김훈학 (인덕대학교 컴퓨터전자과)
  • Kim, Hoon-Hak (Dept. of Computer Electronics, Induk University)
  • 투고 : 2012.07.05
  • 심사 : 2012.08.28
  • 발행 : 2012.09.30

초록

본 논문에서는 전기습윤(Electrowetting) 디스플레이의 효율적인 생산을 위해 섬유형식의 전극들을 제안하고, 이러한 방법을 이용한 전기습윤 셀 구동형 플렉서블 디스플레이의 소스 드라이버 설계방법을 제안하였다. 전기습윤 셀 매트릭스는 임프린팅 방법에 의하여 PET 등의 Substrate 위에 구성하고 셀 매트릭스 사이의 간격에는 드라이버섬유, 습윤 전극섬유와 전도성 섬유를 가로와 세로로 배치하고, 교차점에는 전기적 접점을 구성하여 전기습윤 셀매트릭스가 구동되도록 하였다. 기존의 소스 드라이버에서는 각 채널당 R/2R방식의 DAC을 사용하므로 사용되는 소자의 수가 증가하여 집적도가 저하되는 단점이 있다. 따라서 본 논문에서는 채널당 소자의 수를 감소시켜 집적도를 높이고 비용을 절감할 수 있는 저 전력 소스 드라이버 설계방법을 제안하고 VHDL 프로그램을 이용한 시뮬레이션으로 타당성을 검증하였다.

The Fabric Electrode was proposed for the effective production of the display based on electrowetting in this paper and designed the source driver of flexible display which could be driven by the electrowetting cell. The electrowetting cell matrix was implemented on the substrate(PET) by imprinting. The driver fabric, wetting electrode fabric and conductive fabric was placed horizontally and vertically in the groove between cell matrix and the electrowetting cell matrix can be driven by the cross-point as electric connection. The integration density of driver module is decreased because using the R/2R DAC module per channel in the conventional method. The proposed method could utilize the effective production process and reduce the production price of a display panel. The source driver which consume lower power and can increase the integration density because of reducing the number of driver device per channel was designed and evaluate the driver operation by the simulation using the VHDL programming in this paper.

키워드

참고문헌

  1. Surajit Sengupta, "Electrical resistance of jute fabrics",Indian Journal of Fibre & Textile Research, vol.37, pp.55-59, 2012.
  2. L.Buechley,"Fabric PCBs,electronic sequins, and socket buttons:techniques for e-textile craft", http://hlt.media.mit.edu/publications/buechley_ PUC_07.pdf ,2007
  3. A. Mimura, "Fabrication of Poly-Si TFTs on Flexible Quartz Fibers," ECS Trans. vo.16, pp. 325-331, 2008.
  4. "Completely flexible display based on structure of textiles and electronic divice using the flexible display", Korea Patent : 1009127240000, Aug, 2009.
  5. Frieder Mugele and Jean-Christophe Baret, "Electrowetting: from basics to applications," J. Phys.: Condens. Matter 17 R705, 2005. https://doi.org/10.1088/0953-8984/17/28/R01
  6. Roques-Carmes T, Hayes RA, Feenstra BJ, Schlangen LJM, "Liquid behavior inside a reflective display pixel based on electrowetting." Journal of Applied Physics , pp.4389-4396, 1995.
  7. Johan Feenstra & Rob Hayes, "Electrowetting Displays", Liauavista BV, pp.1-15, May,2009
  8. J. Heikenfeld, A. J. Steckl, "Intense switchable fluoscence in light wave coupled electrowetting devices ," Applied Physics Letters, 86:011105, 2005 https://doi.org/10.1063/1.1842853
  9. ITRI, Taiwan and PVI, http://www.itri.org.tw
  10. "Composition for Organic Polymer Gate Insulating layer and Organic Thin Film Transistor using the same", US Patent : US2009/0152537 A1, Jun.18, 2009
  11. J.E.Anthony, "Funtionalized Acenes and Hetetoacenes for Organic Electronics," Chem.Rev., Vol.106, No.12, pp.5028-5048, 2006. https://doi.org/10.1021/cr050966z
  12. Jong-Wook Kwak,Ju-Hwan Kim, "Dynamic Voltage and Frequency Scaling based on Buffer Memory Access Information," Journal of KSCI, Vol.15, No.3, pp.1-10, 2010.
  13. Chungkun Song, "Technology Status and Prospects of Organic Thin Film Transistor", The Korean Information Display Society, Vol.11, No.2, 2010.