DOI QR코드

DOI QR Code

A Green One-Pot Protocol for Regioselective Synthesis of New Substituted 7,8-Dihydrocinnoline-5(6H)-ones

  • Khalafy, Jabbar (Department of Chemistry, Urmia University) ;
  • Rimaz, Mehdi (Department of Chemistry, Payame Noor University) ;
  • Ezzati, Mahnaz (Department of Chemistry, Urmia University) ;
  • Prager, Rolf H. (School of Chemistry, Physics and Earth Sciences, Flinders University)
  • Received : 2012.05.07
  • Accepted : 2012.05.26
  • Published : 2012.09.20

Abstract

A simple regioselective synthesis of cinnoline derivatives was achieved by a one-pot three component synthetic methodology. New substituted 7,8-dihydrocinnolin-5(6H)-ones are prepared via one-pot three component reaction of arylglyoxals with 1,3-cyclohexanedione and dimedone in the presence of hydrazine hydrate in moderate to good yields.

Keywords

References

  1. Breslow, R.; Maitra, U. Tetrahedron Lett. 1984, 25, 1239. https://doi.org/10.1016/S0040-4039(01)80122-2
  2. Breslow, R.; Maitra, U.; Rideout, D. Tetrahedron Lett. 1983, 24, 1901. https://doi.org/10.1016/S0040-4039(00)81801-8
  3. Rideout, D. C.; Breslow, R. J. Am. Chem. Soc. 1980, 102, 7816. https://doi.org/10.1021/ja00546a048
  4. Clark, J. H.; Macquarrie, D. In Handbook of Green Chemistry and Technology; Blackwell Publishers: Oxford, 2002.
  5. Anastas, P.; Eghbali, N. Chem. Soc. Rev. 2010, 39, 301. https://doi.org/10.1039/b918763b
  6. Anastas, P. T.; Warner, J. C. In Green Chemistry: Theory and Practice; Oxford University Press: New York, 1998.
  7. Leitner, W. Green Chem. 2009, 11, 603. https://doi.org/10.1039/b907013n
  8. Breslow, R. In Green Chemistry; Anastas, P. T., Williamson, T. C., Eds.; Oxford Press: New York, 1998; Chapter 13.
  9. DeSimone, J. M. Science 2002, 297, 799. https://doi.org/10.1126/science.1069622
  10. Horvath, I. T.; Anastas, P. T. Chem. Rev. 2007, 107, 2167. https://doi.org/10.1021/cr0783784
  11. Kumar, B. S. P. A.; Madhav, B.; Reddy, K. H. V.; Nageswar, Y. V. D. Tetrahedron Lett. 2011, 52, 2862. https://doi.org/10.1016/j.tetlet.2011.03.110
  12. Otto, S.; Engberts, J. B. F. N. Pure Appl. Chem. 2000, 72, 1365. https://doi.org/10.1351/pac200072071365
  13. Narayan, S.; Muldoon, J.; Finn, M. G.; Fokin, V. V.; Kolb, H. C.; Sharpless, K. B. Angew. Chem., Int. Ed. 2005, 44, 3275. https://doi.org/10.1002/anie.200462883
  14. Chanda, A.; Fokin, V. V. Chem. Rev. 2009, 109, 725. https://doi.org/10.1021/cr800448q
  15. Aplander, K.; Hidestal, O.; Katebzadeh, K.; Lindstorm, U. M. Green Chem. 2006, 8, 22. https://doi.org/10.1039/b513656c
  16. Liu, R.; Dong, C.; Liang, X.; Wang, X.; Hu, X. J. Org. Chem. 2005, 70, 729. https://doi.org/10.1021/jo048369k
  17. Stavber, G.; Zupan, M.; Jereb, M.; Stavber, S. Org. Lett. 2004, 6, 4973. https://doi.org/10.1021/ol047867c
  18. Lindstrom, U. M. In Organic Reactions in Water: Principles, Strategies and Applications; Wiley-Blackwell: Oxford, UK, 2007.
  19. Hailes, H. C. Org. Process Res. Dev. 2007, 11, 114. https://doi.org/10.1021/op060157x
  20. Lindstrom, U. M. Chem. Rev. 2002, 102, 2751. https://doi.org/10.1021/cr010122p
  21. Butler, R. N.; Coyne, A. G. Chem. Rev. 2010, 110, 6302. https://doi.org/10.1021/cr100162c
  22. Polshettiwar, V.; Varma, R. S. Green Chem. 2010, 12, 743. https://doi.org/10.1039/b921171c
  23. Khatik, G. L.; Kumar, R.; Chakraborti, A. K. Org. Lett. 2006, 8, 2433. https://doi.org/10.1021/ol060846t
  24. Azizi, N.; Aryanasab, F.; Torkiyan, L.; Ziyaei, A.; Saidi, M. R. J. Org. Chem. 2006, 71, 3634. https://doi.org/10.1021/jo060048g
  25. Breslow, R. Acc. Chem. Res. 1991, 24, 159. https://doi.org/10.1021/ar00006a001
  26. Otto, S.; Engberts, J. B. F. N. Org. Biomol. Chem. 2003, 1, 2809. https://doi.org/10.1039/b305672d
  27. Lindstrom, U. M.; Andersson, F. Angew. Chem., Int. Ed. 2006, 45, 548. https://doi.org/10.1002/anie.200502882
  28. Chandrasekhar, J.; Shariffskul, S.; Jorgensen, W. L. J. Phys. Chem. B 2002, 106, 8078. https://doi.org/10.1021/jp020326p
  29. Lubineau, A.; Auge, J. Top. Curr. Chem. 1999, 206, 1. https://doi.org/10.1007/3-540-48664-X_1
  30. Lubineau, A.; Auge, J.; Queneau, Y. Synthesis 1994, 741.
  31. Sheldon, R. A. J. Mol. Catal. A 1996, 107, 75. https://doi.org/10.1016/1381-1169(95)00229-4
  32. Li, C.-J. Chem. Rev. 2005, 105, 3095. https://doi.org/10.1021/cr030009u
  33. Fringuelli, F.; Pizzo, F.; Tortoioli, S.; Vaccaro, L. Org. Lett. 2005, 7, 4411. https://doi.org/10.1021/ol051582y
  34. Pirrung, M. C.; Das Sarma, K. J. Am. Chem. Soc. 2004, 126, 444. https://doi.org/10.1021/ja038583a
  35. Azoulay, S.; Manabe, K.; Kobayashi, S. Org. Lett. 2005, 7, 4593. https://doi.org/10.1021/ol051546z
  36. Manabe, K.; Limura, S.; Sun, X.-M.; Kobayashi, S. J. Am. Chem. Soc. 2002, 124, 11971. https://doi.org/10.1021/ja026241j
  37. Organic Synthesis in Water; Grieco, P. A., Ed.; Blackie Academic and Professional: London, 1998.
  38. Li, C.-J.; Chen, L. Chem. Soc. Rev. 2006, 35, 68. https://doi.org/10.1039/b507207g
  39. Breslow, R. Acc. Chem. Res. 2004, 37, 471. https://doi.org/10.1021/ar040001m
  40. Pirrung, M. C. Chem. -Eur. J. 2006, 12, 1312. https://doi.org/10.1002/chem.200500959
  41. Virkutyte, J.; Baruwati, B.; Varma, R. S. Nano Scale 2010, 2, 1109.
  42. Polshettiwar, V.; Varma, R. S. Tetrahedron 2010, 66, 1091. https://doi.org/10.1016/j.tet.2009.11.015
  43. Liu, X.-L.; Zhang, X.-M.; Yuan, W.-C. Tetrahedron Lett. 2011, 52, 903. https://doi.org/10.1016/j.tetlet.2010.12.060
  44. Azizi, N.; Torkiyan, L.; Saidi, M. R. Org. Lett. 2006, 8, 2079. https://doi.org/10.1021/ol060498v
  45. Wu, H.; Lin, W.; Wan, Y.; Xin, H.-Q.; Shi, D.- Q.; Shi, Y.-H.; Yuan, R.; Bo, R.-C.; Yin, W. J. Comb. Chem. 2010, 12, 31. https://doi.org/10.1021/cc9001179
  46. Krasovskaya, V.; Krasovskiy, A.; Bhattacharjya, A.; Lipshutz, B. H. Chem. Commun. 2011, 47, 5717. https://doi.org/10.1039/c1cc11087j
  47. Gogoi, S.; Dutta, M.; Gogoi, J.; Boruah, R. C. Tetrahedron Lett. 2011, 52, 813. https://doi.org/10.1016/j.tetlet.2010.12.036
  48. Kumar, D.; Kumar, N. M.; Patel, G.; Gupta, S.; Varma, R. S. Tetrahedron Lett. 2011, 52, 1983. https://doi.org/10.1016/j.tetlet.2011.02.069
  49. Xie, J.-W.; Li, P.; Wang, T.; Zhou, F.-T. Tetrahedron Lett. 2011, 52, 2379. https://doi.org/10.1016/j.tetlet.2011.02.093
  50. Ramesh, K.; Murthy, S. N.; Nageswar, Y. V. D. Tetrahedron Lett. 2011, 52, 2362. https://doi.org/10.1016/j.tetlet.2011.02.082
  51. El Kaim, L.; Grimaud, L.; Purumandla, S. R. Tetrahedron Lett. 2010, 51, 4962. https://doi.org/10.1016/j.tetlet.2010.07.058
  52. Palasz, A. Synthesis 2010, 4021.
  53. Kolla, S. R.; Lee, Y. R. Tetrahedron 2010, 66, 8938. https://doi.org/10.1016/j.tet.2010.09.050
  54. Shi, L.; Tu, Y.-Q.; Wang, M.; Zhang, F.-M.; Fan, C. A. Org. Lett. 2004, 6, 1001. https://doi.org/10.1021/ol049936t
  55. Ma, N.; Jiang, B.; Zhang, G.; Tu, S.-J.; Wever, W.; Li, G. Green Chem. 2010, 12, 1357. https://doi.org/10.1039/c0gc00073f
  56. Adib, M.; Sheikhi, E.; Kavoosi, A.; Bijanzadeh, H. R. Tetrahedron 2010, 66, 9263. https://doi.org/10.1016/j.tet.2010.09.032
  57. Zhu, J.; Bienayme, H. In Multicomponent Reactions; Wiley-VCH Weinheim: Germany, 2005.
  58. Malacria, M. Chem. Rev. 1996, 96, 289. https://doi.org/10.1021/cr9500186
  59. Schwier, T.; Sromek, A. W.; Yap, D. M.; Chernyak, D.; Gevorgyan, V. J. Am. Chem. Soc. 2007, 129, 9868. https://doi.org/10.1021/ja072446m
  60. Barluenga, J.; Jimenez-Aquino, A.; Valdes, C.; Aznar, F. Angew. Chem., Int. Ed. 2007, 46, 1529. https://doi.org/10.1002/anie.200604407
  61. Waldmann, H.; Kuhn, M.; Liu, W.; Kumar, K. Chem. Commun. 2008, 1211.
  62. de Meijere, A.; von Zezschwitz, P.; Braese, S. Acc. Chem. Res. 2005, 38, 413. https://doi.org/10.1021/ar980025r
  63. Tietze, L. F.; Brasche, G.; Gericke, K. In Domino Reactions in Organic Synthesis; Wiley-VCH Weinheim: Germany, 2006.
  64. Diguez-Vzquez, A.; Tzschucke, C. C.; Lam, W. Y.; Ley, S. V. Angew. Chem., Int. Ed. 2008, 47, 209. https://doi.org/10.1002/anie.200704595
  65. Arya, A. K.; Kumar, M. Green Chem. 2011, 13, 1332. https://doi.org/10.1039/c1gc00008j
  66. Tietze, L. F. Chem. Rev. 1996, 96, 115. https://doi.org/10.1021/cr950027e
  67. Trost, B. M. Acc. Chem. Res. 2002, 35, 695. https://doi.org/10.1021/ar010068z
  68. Wender, P. A.; Verma, V. A.; Paxton, T. J.; Pillow, T. H. Acc. Chem. Res. 2008, 41, 40. https://doi.org/10.1021/ar700155p
  69. Doemling, A. Chem. Rev. 2006, 106, 17. https://doi.org/10.1021/cr0505728
  70. D'Souza, D. M.; Mueller, T. J. J. Chem. Soc. Rev. 2007, 36, 1095. https://doi.org/10.1039/b608235c
  71. Polshettiwar, V.; Varma, R. S. Chem. Soc. Rev. 2008, 37, 1546. https://doi.org/10.1039/b716534j
  72. Shore, G.; Yoo, W.-J.; Li, C.-J.; Organ, M. G. Chem. Eur. J. 2010, 16, 126. https://doi.org/10.1002/chem.200902396
  73. Ganem, B. Acc. Chem. Res. 2009, 42, 463. https://doi.org/10.1021/ar800214s
  74. Padwa, A. Chem. Soc. Rev. 2009, 38, 3072. https://doi.org/10.1039/b816701j
  75. Hennequin, L. F.; Thomas, A. P.; Johnstone, C.; Stokes, E. S. E.; Plé, P. A.; Lohmann, J.-J. M.; Ogilvie, D. J.; Dukes, M.; Wedge, S. R.; Curwen, J. O.; Kendrew, J.; Lambert-van der Brempt, C. J. Med. Chem. 1999, 42, 5369. https://doi.org/10.1021/jm990345w
  76. Yu, Y.; Singh, S. K.; Liu, A.; Li, T.-K.; Liu, L. F.; La Voie, E. J. Bioorg. Med. Chem. 2003, 11, 1475. https://doi.org/10.1016/S0968-0896(02)00604-1
  77. Ruchelman, A. L.; Sing, S. K.; Ray, A.; Wu, X.; Yang, J. M.; Zhu, N.; Liu, A.; Liu, L. F.; LaVoie, E. J. Bioorg. Med. Chem. 2004, 12, 795. https://doi.org/10.1016/j.bmc.2003.10.061
  78. Sato, Y.; Suzuki, Y.; Yamamoto, K.; Kuroiwa, S.; Maruyama, S. JP2005/10494, WO 2005121105, 2005
  79. Saxena, V.; Maiti, S. K.; Kumar, N.; Sharma, A. K. Indian. J. Anim. Sci. 2008, 78, 1250.
  80. Barraja, P.; Diana, P.; Lauria, A.; Passananti, A.; Almerico, A. M.; Minnei, C.; Longu, S.; Congiu, D.; Musiu, C.; LaColla, P. Bioorg. Med. Chem. 1999, 7, 1591. https://doi.org/10.1016/S0968-0896(99)00096-6
  81. Gavini, E.; Juliano, C.; Mulu, A.; Pirisino, G.; Murineddu, G.; Pinna, G. A. Arch. Pharm. 2000, 333, 341. https://doi.org/10.1002/1521-4184(200010)333:10<341::AID-ARDP341>3.0.CO;2-U
  82. Pattan, S. R.; Ali, M. S.; Pattan, J. S.; Redd, V. V. K. Ind. J. Heterocycl. Chem. 2004, 14, 157.
  83. Narayana, B.; Ra, K. K.; Ashalatha, K. K.; Kumari, N. S. Ind. J. Chem. 2006, 45B, 1704.
  84. Choudhari, B. P.; Mulwad, V. V. Ind. J. Chem. 2006, 45B, 309.
  85. Vikas, S.; Darbhamulla, S. Afr. Health Sci. 2009, 9, 275.
  86. Shaban, M. A.; Al Badry, O. M.; Kamala, A. M.; el Wahap Abd El-Gawad, M. A. J. Chem. Res. 2008, 715.
  87. Vargas, F.; Zoltan, T.; Rivas, C.; Ramirez, A.; Cordero, T.; Díaz, Y.; Izzo, C.; Cárdenas, Y. M.; López, V.; Gómez, L.; Ortega, J.; Fuentes, A. J. Photochem. Photobiol. B: Biol. 2008, 92, 83. https://doi.org/10.1016/j.jphotobiol.2008.05.001
  88. Ryu, C.-K.; Lee, J. Y. Bioorg. Med. Chem. Lett. 2006, 16, 1850 https://doi.org/10.1016/j.bmcl.2006.01.005
  89. Ramalingam, P.; Ganapaty, S.; Babu Rao, Ch.; Ravi, T. K. Indian J. Heterocycl. Chem. 2006, 15, 359.
  90. Lunniss, C.; Eldred, C.; Aston, N.; Craven, A.; Gohil, K.; Judkins, B.; Keeling, S.; Ranshaw, L.; Robinson, E.; Shipley, T.; Trivedi, N. Bioorg. Med. Chem. Lett. 2010, 20, 137. https://doi.org/10.1016/j.bmcl.2009.11.010
  91. Mitsumori, T.; Bendikov, M.; Sedo, J.; Wudl, F. Chem. Mater. 2003, 15, 3759. https://doi.org/10.1021/cm0340532
  92. Chapoulaud, V. G.; Plé, N.; Turck, A.; Queguiner, G. Tetrahedron 2000, 56, 5499. https://doi.org/10.1016/S0040-4020(00)00448-8
  93. Busch, A.; Turck, A.; Nowicka, K.; Barasella, A.; Andraud, C.; Plé, N. Heterocycles 2007, 71, 1723. https://doi.org/10.3987/COM-06-10984
  94. Haider, N.; Holzer, W. Sci. Synth. 2004, 16, 251.
  95. Vinogradova, O. V.; Balova, I. A. Chem. Heterocycl. Comp. 2008, 44, 501. https://doi.org/10.1007/s10593-008-0070-0
  96. Alajarin, M.; Bonillo, B.; Marin-Luna, M.; Vidal, A.; Orenes, R.-A. J. Org. Chem. 2009, 74, 3558. https://doi.org/10.1021/jo900304a
  97. Jiang, B.; Hao, W.-J.; Zhang, J.-P.; Tu, S.-J.; Shi, F. Org. Biomol. Chem. 2009, 7, 1171. https://doi.org/10.1039/b817930a
  98. Hasegawa, K.; Kimura, N.; Arai, S.; Nishida, A. J. Org. Chem. 2008, 73, 6363. https://doi.org/10.1021/jo8010864
  99. Vinogradova, O. V.; Sorokoumov, V. N.; Vasilevskii, S. F.; Balovaa, I. A. Russ. Chem. Bull. 2008, 57, 1725. https://doi.org/10.1007/s11172-008-0228-z
  100. Ichikawa, J.; Wada, Y.; Kuroki, H.; Miharab, J.; Nadanob, R. Org. Biomol. Chem. 2007, 5, 3956. https://doi.org/10.1039/b712965c
  101. Vinogradova, O. V.; Sorokoumov, V. N.; Vasilevsky, S. F.; Balova, I. A. Tetrahedron Lett. 2007, 48, 4907. https://doi.org/10.1016/j.tetlet.2007.05.055
  102. Vasilevsky, S. F.; Tretyakov, E. V.; Verkruijsse, H. D. Synth. Commun. 1994, 24, 1733. https://doi.org/10.1080/00397919408010177
  103. Vasilevsky, S. F.; Tretyakov, E. V. Liebigs Ann. Chem. 1995, 775.
  104. Alford, E. J.; Irving, H.; Marsh, H. S.; Schofield, K. J. Chem. Soc. 1952, 2991. https://doi.org/10.1039/jr9520002991
  105. Nunn, A. J.; Schofield, K. J. Chem. Soc. 1953, 3700. https://doi.org/10.1039/jr9530003700
  106. Pfannstiel, K.; Janecke, J. Ber. Dtsch. Chem. Ges. 1942, 75, 1096. https://doi.org/10.1002/cber.19420750911
  107. Baumgarten, H. E.; Anderson, C. H. J. Am. Chem. Soc. 1958, 80, 1981.
  108. Kanner, C. B.; Pandit, U. K. Tetrahedron 1981, 37, 3513. https://doi.org/10.1016/S0040-4020(01)98868-4
  109. Kiselyov, A. S. Tetrahedron Lett. 1995, 36, 1383. https://doi.org/10.1016/0040-4039(95)00005-W
  110. Domingues, C. Tetrahedron Lett. 1999, 40, 5111. https://doi.org/10.1016/S0040-4039(99)00949-1
  111. Shvartsberg, M. S.; Ivanchikova, I. D. Tetrahedron Lett. 2000, 41, 771. https://doi.org/10.1016/S0040-4039(99)02151-6
  112. Al-Awadi, N. A.; Elnagdi, M. H.; Ibrahim, Y. A.; Kaul, K.; Kumar, A. Tetrahedron 2001, 57, 1609 https://doi.org/10.1016/S0040-4020(00)01141-8
  113. Gomaa, M. A.-M. Tetrahedron Lett. 2003, 44, 3493. https://doi.org/10.1016/S0040-4039(03)00686-5
  114. Neber, P. W.; Kniller, G.; Herbst, K.; Trissler, H. A. Liebigs Ann. Chem. 1929, 471, 113. https://doi.org/10.1002/jlac.19294710106
  115. Alford, E. J.; Schofield, K. J. Chem. Soc. 1952, 2081. https://doi.org/10.1039/jr9520002081
  116. Chen, D.; Yang, C.; Xie, Y.; Ding, J. Heterocycles 2009, 77, 273. https://doi.org/10.3987/COM-08-S(F)7
  117. Kimball, D. B.; Haley, M. M. Angew. Chem., Int. Ed. 2002, 41, 3338. https://doi.org/10.1002/1521-3773(20020916)41:18<3338::AID-ANIE3338>3.0.CO;2-7
  118. Brase, S.; Dahmen, S.; Heuts, J. Tetrahedron Lett. 1999, 40, 6201. https://doi.org/10.1016/S0040-4039(99)01166-1
  119. Brase, S.; Gil, C.; Knepper, K. Bioorg. Med. Chem. 2002, 10, 2415. https://doi.org/10.1016/S0968-0896(02)00025-1
  120. Kimball, D. B.; Hayes, A. G.; Haley, M. M. Org. Lett. 2000, 2, 3825. https://doi.org/10.1021/ol006517x
  121. Kimball, D. B.; Weakley, T. J. R.; Herges, R.; Haley, M. M. J. Am. Chem. Soc. 2002, 124, 13463. https://doi.org/10.1021/ja027809r
  122. Kimball, D. B.; Weakley, T. J. R.; Haley, M. M. J. Org. Chem. 2002, 67, 6395. https://doi.org/10.1021/jo020229s
  123. Kimball, D. B.; Weakley, T. J. R.; Herges, R.; Haley, M. M. J. Am. Chem. Soc. 2002, 124, 1572. https://doi.org/10.1021/ja017227u
  124. Vinogradovaa, O. V.; Sorokoumova, V. N.; Balova, I. A. Tetrahedron Lett. 2009, 50, 6358. https://doi.org/10.1016/j.tetlet.2009.08.103
  125. Zeni, G.; Larock, R. C. Chem. Rev. 2006, 106, 4644. https://doi.org/10.1021/cr0683966
  126. Zeni, G.; Larock, R. C. Chem. Rev. 2004, 104, 2285. https://doi.org/10.1021/cr020085h
  127. Tsukamoto, H.; Kondo, Y. Org. Lett. 2007, 9, 4227. https://doi.org/10.1021/ol701776m
  128. Heller, S. T.; Natarajan, S. R. Org. Lett. 2007, 9, 4947. https://doi.org/10.1021/ol701784w
  129. Yang, M.; Zhang, X.; Lu, X. Org. Lett. 2007, 9, 5131. https://doi.org/10.1021/ol702503e
  130. Chernyak, N.; Tilly, D.; Li, Z.; Gevorgyan, V. Chem. Commun. 2010, 46, 150. https://doi.org/10.1039/b919991h
  131. Zhu, C.; Yamane, M. Tetrahedron 2011, 67, 4933. https://doi.org/10.1016/j.tet.2011.04.079
  132. Khalafy, J.; Rimaz, M.; Panahi, L.; Rabiei, H. Bull. Korean Chem. Soc. 2011, 32, 2428. https://doi.org/10.5012/bkcs.2011.32.7.2428
  133. Rimaz, M.; Khalafy, J. Arkivoc. 2010, (ii), 110.
  134. Rimaz, M.; Khalafy, J.; Najafi Moghadam, P. Aust. J. Chem. 2010, 63, 1396. https://doi.org/10.1071/CH09602
  135. Rimaz, M.; Noroozi Pesyan, N.; Khalafy, J. Magn. Reson. Chem. 2010, 48, 276. https://doi.org/10.1002/mrc.2573
  136. Rimaz, M.; Khalafy, J.; Noroozi Pesyan, N.; Prager, R. H. Aust. J. Chem. 2010, 63, 507.
  137. Altomare, C.; Cellamare, S.; Summo, L.; Catto, M.; Carotti, A.; Thull, U.; Carrupt, P.-A.; Testa, B.; Stoeckli-Evans, H. J. Med. Chem. 1998, 41, 3812. https://doi.org/10.1021/jm981005y

Cited by

  1. An efficient and facile regioselective synthesis of new substituted (E)-1-(3-aryl-7,8-dihydrocinnoline-5(6H)-ylidene)hydrazines and (1E,2E)-1,2-bis(3-aryl-7,8-dihydrocinnoline-5(6H)-ylidene)hydrazines vol.11, pp.4, 2014, https://doi.org/10.1007/s13738-013-0378-2
  2. ]azine Derivatives vol.16, pp.10, 2014, https://doi.org/10.1021/co5000695
  3. Reactions of 9-Aroyl-3,3,6,6-Tetramethyl-1,2,3,4,5,6,7,8-Octahydroxanthene-1,8-Diones With Hydrazine and Methylhydrazine* vol.49, pp.11, 2014, https://doi.org/10.1007/s10593-014-1416-4
  4. Transition metal-free one-pot synthesis of nitrogen-containing heterocycles vol.20, pp.1, 2016, https://doi.org/10.1007/s11030-015-9596-0
  5. An Efficient One-pot Two-component Protocol for Regio- and Chemoselective Synthesis of 5-Aryloyl-1,3,7,9-tetraalkyl-2,8-dithioxo-2,3,8,9-tetrahydro-1H-pyrano[2,3-d:6,5-d′]dipyrimidine-4,6(5H,7H)-diones vol.67, pp.2, 2014, https://doi.org/10.1071/CH13438
  6. An efficient one-pot protocol for regioselective synthesis of 3-aryl-6,8-dialkyl-7-thioxo-7,8-dihydropyrimido[4,5-c] pyridazine-5(6H)-ones vol.34, pp.4, 2013, https://doi.org/10.1080/17415993.2012.745126
  7. Crystal structure of 4-(4-((3-bromophenyl)amino)-6-(tert-butyl)-3-(2-hydroxypropan-2-yl)cinnolin-8-yl)-2-methylbut-3-yn-2-ol, C26H30BrN3O2 vol.231, pp.4, 2012, https://doi.org/10.1515/ncrs-2016-0138
  8. Crystal structure of 4-(4-((3-bromophenyl)amino)-6-(tert-butyl)-3-(2-hydroxypropan-2-yl)cinnolin-8-yl)-2-methylbut-3-yn-2-ol, C26H30BrN3O2 vol.231, pp.4, 2012, https://doi.org/10.1515/ncrs-2016-0138
  9. Synthesis, crystal structure and spectroscopic properties of a novel tricyclic cinnoline derivative vol.141, pp.None, 2017, https://doi.org/10.1016/j.dyepig.2017.02.038
  10. Recent Developments in the Synthesis of Cinnoline Derivatives vol.16, pp.6, 2012, https://doi.org/10.2174/1570193x15666180712124148
  11. Arylglyoxals as Versatile Synthons for Heterocycles Through Multi-Component Reactions vol.23, pp.18, 2019, https://doi.org/10.2174/1385272823666191019110010
  12. Three-component reaction of azulene, aryl glyoxal and 1,3-dicarbonyl compound for the synthesis of various azulene derivatives vol.10, pp.17, 2012, https://doi.org/10.1039/d0ra00356e