DOI QR코드

DOI QR Code

Prokaryotic Selectivity, Anti-endotoxic Activity and Protease Stability of Diastereomeric and Enantiomeric Analogs of Human Antimicrobial Peptide LL-37

  • Nan, Yong-Hai (Department of Bio-Materials, Graduate School, School of Medicine, Chosun University) ;
  • Lee, Bong-Ju (Department of Physics, Chosun University) ;
  • Shin, Song-Yub (Department of Bio-Materials, Graduate School, School of Medicine, Chosun University)
  • Received : 2012.05.17
  • Accepted : 2012.05.26
  • Published : 2012.09.20

Abstract

LL-37 is the only antimicrobial peptide (AMP) of the human cathelicidin family. In addition to potent antimicrobial activity, LL-37 is known to have the potential to inhibit lipolysaccharide (LPS)-induced endotoxic effects. To provide the stability to proteolytic digestion and increase prokaryotic selectivity and/or anti-endotoxic activity of two Lys/Trp-substituted 19-meric antimicrobial peptides (a4-W1 and a4-W2) designed from IG-19 (residues 13-31 of LL-37), we synthesized the diastereomeric peptides (a4-W1-D and a4-W2-D) with D-amino acid substitution at positions 3, 7, 10, 13 and 17 of a4-W1 and a4-W2, respectively and the enantiomeric peptides (a4-W1-E and a4-W2-E) composed D-amino acids. The diastereomeric peptides exhibited the best prokaryotic selectivity and effective protease stability, but no or less anti-endotoxic activity. In contrast, the enantiomeric peptides had not only prokaryotic selectivity and anti-endotoxic activity but also protease stability. Our results suggest that the hydrophobicity and ${\alpha}$-helicity of the peptide is important for anti-endotoxic activity. In particular, the enantiomeric peptides showed potent anti-endotoxic and LPS-neutralizing activities comparable to that of LL-37. Taken together, both a4-W1-E and a4-W2-E holds promise as a template for the development of peptide antibiotics for the treatment of endotoxic shock and sepsis.

Keywords

References

  1. Smet, K. De.; Contreras, R. Biotechnol. Lett. 2005, 27, 1337. https://doi.org/10.1007/s10529-005-0936-5
  2. Zanetti, M. J. Leukoc. Biol. 2004, 75, 39.
  3. Dürr, U. H.; Sudheendra, U. S.; Ramamoorthy, A. Biochim. Biophy. Acta 2006, 1758, 1408. https://doi.org/10.1016/j.bbamem.2006.03.030
  4. Nijnik, A.; Hancock, R. E. Curr. Opin. Hematol. 2009, 16, 41. https://doi.org/10.1097/MOH.0b013e32831ac517
  5. Larrick, J. W.; Lee, J.; Ma, S.; Li, X.; Francke, U.; Wright, S. C.; Balint, R. F. FEBS. Lett. 1996, 398, 74. https://doi.org/10.1016/S0014-5793(96)01199-4
  6. Sorensen, O. E.; Follin, P.; Johnsen, A. H.; Calafat, J.; Tjabringa, G. S.; Hiemstra, P. S.; Borregaard, N. Blood 2001, 97, 3951. https://doi.org/10.1182/blood.V97.12.3951
  7. Bals, R.; Wang, X.; Zasloff, M.; Wilson, J. M. Proc. Natl. Acad. Sci. USA 1998, 95, 9541. https://doi.org/10.1073/pnas.95.16.9541
  8. Travis, S. M.; Anderson, N. N.; Forsyth, W. R.; Espiritu, C.; Conway, B. D.; Greenberg, E. P.; McCray, P. B., Jr.; Lehrer, R. I.; Welsh, M. J.; Tack, B. F. Infect. Immun. 2000, 68, 2748. https://doi.org/10.1128/IAI.68.5.2748-2755.2000
  9. Mookherjee, N.; Brown, K. L.; Bowdish, D. M.; Doria, S.; Falsafi, R.; Hokamp, K.; Roche, F. M.; Mu, R.; Doho, G. H.; Pistolic, J.; Powers, J. P.; Bryan, J.; Brinkman, F. S.; Hancock, R. E. J. Immunol. 2006, 176, 2455. https://doi.org/10.4049/jimmunol.176.4.2455
  10. Kandler, K.; Shaykhiev, R.; Kleemann, P.; Klescz, F.; Lohoff, M.; Vogelmeier, C.; Bals, R. Int. Immunol. 2006, 18, 1729. https://doi.org/10.1093/intimm/dxl107
  11. Molhoek, E. M.; den Hertog, A. L.; de Vries, A. M.; Nazmi, K.; Veerman, E. C.; Hartgers, F. C.; Yazdanbakhsh, M.; Bikker, F. J.; van der Kleij, D. Biol. Chem. 2009, 390, 295. https://doi.org/10.1515/BC.2009.037
  12. Nell, M. J.; Tjabringa, G. S.; Wafelman, A. R.; Verrijk, R.; Hiemstra, P. S.; Drijfhout, J. W.; Grote, J. J. Peptides 2006, 27, 649. https://doi.org/10.1016/j.peptides.2005.09.016
  13. Nan, Y. H.; Bang, J. K.; Jacob, B.; Park, I. S.; Shin, S. Y. Peptides 2012, 35, 239. https://doi.org/10.1016/j.peptides.2012.04.004
  14. Wang, G. J. Biol. Chem. 2008, 283, 32637. https://doi.org/10.1074/jbc.M805533200
  15. Rozek, A.; Powers, J. P.; Friedrich, C. L.; Hancock, R. E. Biochemistry 2003, 42, 14130 https://doi.org/10.1021/bi035643g
  16. Hamamoto, K.; Kida, Y.; Zhang, Y.; Shimizu, T.; Kuwano, K. Microbiol. Immunol. 2002, 46, 741. https://doi.org/10.1111/j.1348-0421.2002.tb02759.x
  17. Hu, W.; Lee, K. C.; Cross, T. A. Biochemistry 1993, 32, 7035. https://doi.org/10.1021/bi00078a032
  18. Scudiero, D. A.; Shoemaker, R. H.; Paull, K. D.; Monks, A.; Tierney, S.; Nofziger, T. H.; Currens, M. J.; Seniff, D.; Boyd, M. R. Cancer. Res. 1988, 48, 4827.
  19. Wang, P.; Nan, Y. H.; Yang, S. T.; Kang, S. W.; Kim, Y.; Park, I. S.; Hahm, K. S.; Shin, S. Y. Peptides 2010, 31, 1251. https://doi.org/10.1016/j.peptides.2010.03.032
  20. Green, L. C.; Wagner, D. A.; Glogowski, J.; Skipper, P. L.; Wishnok, J. S.; Tannenbaum, S. R. Anal. Biochem. 1982, 126, 131. https://doi.org/10.1016/0003-2697(82)90118-X
  21. Xiao, Y.; Dai, H.; Bommineni, Y. R.; Soulages, J. L.; Gong, Y. X.; Prakash, O.; Zhang, G. FEBS J. 2006, 273, 2581. https://doi.org/10.1111/j.1742-4658.2006.05261.x
  22. Bhunia, A.; Mohanram, H.; Domadia, P. N.; Torres, J.; Bhattacharjya, S. J. Biol. Chem. 2009, 284, 21991. https://doi.org/10.1074/jbc.M109.013573
  23. Kim, S.; Kim, S. S.; Lee, B. J. Peptides 2005, 26, 2050. https://doi.org/10.1016/j.peptides.2005.04.007
  24. Chen, Y.; Mant, C. T.; Farmer, S. W.; Hancock, R. E.; Vasil, M. L.; Hodges, R. S. J. Biol. Chem. 2005, 280, 12316. https://doi.org/10.1074/jbc.M413406200
  25. Solanas, C.; de la Torre, B. G.; Fernández-Reyes, M.; Santiveri, C. M.; Jiménez, M. A.; Rivas, L.; Jiménez, A. I.; Andreu, D.; Cativiela, C. J. Med. Chem. 2009, 52, 664. https://doi.org/10.1021/jm800886n
  26. Park, K. H.; Nan, Y. H.; Park, Y.; Kim, J. I.; Park, I. S.; Hahm, K. S.; Shin, S. Y. Biochim. Biophys. Acta 2009, 1788, 1193. https://doi.org/10.1016/j.bbamem.2009.02.020
  27. Lin, Q. P.; Zhou, L. F.; Li, N. N.; Chen, Y. Q.; Li, B. C.; Cai, Y. F.; Zhang, S. Q. Eur. J. Pharmacol. 2008, 596, 160. https://doi.org/10.1016/j.ejphar.2008.08.017
  28. Kim, J. K.; Lee, E.; Shin, S.; Jeong, K. W.; Lee, J. Y.; Bae, S. Y.; Kim, S. H.; Lee, J.; Kim, S. R.; Lee, D. G.; Hwang, J. S.; Kim, Y. J. Biol. Chem. 2011, 286, 41296. https://doi.org/10.1074/jbc.M111.269225
  29. Wang, P.; Nan, Y. H.; Yang, S. T.; Kang, S. W.; Kim, Y.; Park, I. S.; Hahm, K. S.; Shin, S. Y. Peptides 2010, 31, 1251 https://doi.org/10.1016/j.peptides.2010.03.032
  30. Rosenfeld, Y.; Sahl, H. G.; Shai, Y. Biochemistry 2008, 17, 6468.
  31. Ried, C.; Wahl, C.; Miethke, T.; Wellnhofer, G.; Landgraf, C.; Schneider-Mergener, J.; Hoess, A. J. Biol. Chem. 1996, 271, 28120. https://doi.org/10.1074/jbc.271.45.28120

Cited by

  1. Cell Selectivity and Anti-inflammatory Activity of a Novel Tritrpticin Analog Containing Homo-tryptophan Peptoid Residues vol.34, pp.3, 2013, https://doi.org/10.5012/bkcs.2013.34.3.963
  2. Prokaryotic Selectivity, Bactericidal Mechanism and LPS-neutralizing Activity of Lys-linked Dimeric Peptide of Indolicidin C-terminal Hexapeptide vol.34, pp.7, 2013, https://doi.org/10.5012/bkcs.2013.34.7.2187
  3. Genetic diversity of Japanese quail cathelicidins vol.100, pp.5, 2021, https://doi.org/10.1016/j.psj.2021.101046