DOI QR코드

DOI QR Code

New Donor Materials Based on Thiazole and Triphenylamine for Photovoltaic Devices

  • Ro, Tak-Kyun (Department of Chemistry, College of Natural Sciences, Seoul National University) ;
  • Hong, Jong-In (Department of Chemistry, College of Natural Sciences, Seoul National University)
  • Received : 2012.04.13
  • Accepted : 2012.05.26
  • Published : 2012.09.20

Abstract

New photovoltaic donor materials, 4,4'-(2,2'-bithiazole-5,5'-diyl)bis(N,N-diphenylbenzenamine) (BDT) and 4-(2,2'-bithiazol-5-yl)-N,N-diphenylbenzenamine (BT), were synthesized. A solution processable triphenylamine-containing bithiazole (BDT and BT) was blended with a [6,6]-phenyl $C_{61}$ butyric acid methyl ester (PCBM) acceptor to study the performance of small-molecule-based bulk heterojunction (BHJ) photovoltaic devices. Optimum device performance was achieved after annealing, for device with a BDT/PCBM ratio of 1:4. The open-circuit voltage, short-circuit current, and power conversion efficiency of the device with the aforementioned BDT/PCBM ratio were 0.51 V, 4.10 $mA\;cm^{-2}$, and 0.68%, respectively, under simulated AM 1.5 solar irradiation (100 $mW\;cm^{-2}$).

Keywords

References

  1. Kim, J. Y.; Lee, K.; Coates, N. E.; Moses, D.; Nguyen, T.-Q.; Dante, M.; Heeger, A. J. Science 2007, 317, 222. https://doi.org/10.1126/science.1141711
  2. Dennler, G.; Scharber, M. C.; Brabec, C. J. Adv. Mater. 2009, 21, 1323. https://doi.org/10.1002/adma.200801283
  3. Ma, W.; Yang, C.; Gong, X.; Lee K.; Heeger, A. J. Adv. Funct. Mater. 2005, 15, 1617. https://doi.org/10.1002/adfm.200500211
  4. Thompson, B. C.; Frechet, J. M. J. Angew. Chem. Int. Ed. 2008, 47, 58.
  5. Hoppe, H.; Sariciftci, N. S. J. Mater. Chem. 2006, 16, 45. https://doi.org/10.1039/b510618b
  6. Roquet, S.; Bettignies, R. D.; Leriche, P.; Cravino, A.; Roncali, J. J. Mater. Chem. 2006, 16, 3040. https://doi.org/10.1039/b604261a
  7. Karpe, S.; Cravino, A.; Frère, P.; Allain, M.; Mabon, G.; Roncali, J. Adv. Funct. Mater. 2007, 17, 1163. https://doi.org/10.1002/adfm.200600680
  8. Liu, Y.; Wan, X.; Yin, B.; Zhou, J.; Long, G.; Yin, S.; Chen, Y. J. Mater. Chem. 2010, 20, 2464. https://doi.org/10.1039/b925048d
  9. Shirota, Y. J. Mater. Chem. 2000, 10, 1. https://doi.org/10.1039/a908130e
  10. Shirota, Y. J. Mater. Chem. 2005, 15, 75. https://doi.org/10.1039/b413819h
  11. Noda, T.; Ogawa, H.; Noma, N.; Shirota, Y. Adv. Mater. 1997, 9, 720. https://doi.org/10.1002/adma.19970090908
  12. Kageyama, H.; Ohishi, H.; Tanaka, M.; Ohmori, Y.; Shirota, Y. Adv. Funct. Mater. 2009, 19, 3948. https://doi.org/10.1002/adfm.200901259
  13. Roncali, J. Acc. Chem. Res. 2009, 42, 1719. https://doi.org/10.1021/ar900041b
  14. Roquet, S.; Cravino, A.; Leriche, P.; Aleveque, O.; Frère, P.; Roncali, J. J. Am. Chem. Soc. 2006, 128, 3459. https://doi.org/10.1021/ja058178e
  15. Cravino, A.; Roquet, S.; Leriche, P.; Aleveque, O.; Frere, P.; Roncali, J. Chem. Commun. 2006, 1416.
  16. He, C.; He, Q.; Yang, X.; Wu, G.; Yang, C.; Bai, F.; Shuai, Z.; Wang, L.; Li, Y. J. Phys. Chem. C. 2007, 111, 8661. https://doi.org/10.1021/jp070714x
  17. Li, K.; Qu, J.; Xu, B.; Zhou, Y.; Liu, L.; Peng, P.; Tian, W. New J. Chem. 2009, 33, 2120. https://doi.org/10.1039/b9nj00236g
  18. Huo, L.; He, C.; Han, M.; Zhou, E.; Li, Y. J. Polym. Sci. Pol. Chem. 2007, 45, 3861. https://doi.org/10.1002/pola.22136
  19. He, Q.; He, C.; Sun, Y.; Wu, H.; Li, Y.; Bai, F. Thin Solid Films 2008, 516, 5935. https://doi.org/10.1016/j.tsf.2007.10.058
  20. He, C.; He, Q.; Yi, Y.; Wu, G.; Bai, F.; Shuai, Z.; Li, Y. J. Mater. Chem. 2008, 18, 4085. https://doi.org/10.1039/b807456a
  21. Zhang, J.; Yang, Y.; He, C.; He, Y.; Zhao, G.; Li, Y. Macromolecules 2009, 42, 7619. https://doi.org/10.1021/ma901896n
  22. Shang, H.; Fan, H.; Shi, Q.; Li, S.; Li, Y.; Zhan, X. Sol. Energy Mater. Sol. Cells 2007, 94, 457.
  23. Yang, Y.; Zhang, J.; Zhou, Y.; Zhao, G.; He, C.; Li, Y.; Anderson, M.; Inganäs, O.; Zhang, F. J. Phys. Chem. C 2010, 114, 3701. https://doi.org/10.1021/jp910836t
  24. Biniek, L.; Chochos, C. L.; Leclerc, N.; Hadziioannou, G.; Kallitsis, J. K.; Bechara, R.; Lévêque, P.; Heiser, T. J. Mater. Chem. 2009, 19, 4946. https://doi.org/10.1039/b819177h
  25. Mei, J.; Heston, N. C.; Vasilyeva, S. V.; Reynolds, J. R. Macromolecules 2009, 42, 1482. https://doi.org/10.1021/ma802779m
  26. Li, W.; Du, C.; Li, F.; Zhou, Y.; Fahlman, M.; Bo, Z.; Zhang, F. Chem. Mater. 2009, 21, 5327. https://doi.org/10.1021/cm902611b
  27. Mikroyannidis, J. A.; Suresh, P.; Sharma, G. D. Org. Electron. 2010, 11, 311. https://doi.org/10.1016/j.orgel.2009.11.010
  28. Campos, L. M.; Tontcheva, A.; Günes, S.; Sonmez, G.; Neugebauer, H.; Sariciftci, N. S.; Wudl, F. Chem. Mater. 2005, 17, 4031. https://doi.org/10.1021/cm050463+
  29. Zhang, F.; Perzon, E.; Wang, X.; Mammo, W.; Anderson, M. R.; Inganäs, O. Adv. Funct. Mater. 2005, 15, 745. https://doi.org/10.1002/adfm.200400416
  30. Zoombelt, A. P.; Fonrodona, M.; Turbiez, M. G. R.; Wienk, M. M.; Janssen, R. A. J. J. Mater. Chem. 2009, 19, 5336. https://doi.org/10.1039/b821979f
  31. Sharma, G. D.; Roy, M. S.; Sangodkar, G. S.; Gupta, S. K. Synthetic Matals 1996, 83, 1. https://doi.org/10.1016/S0379-6779(97)80045-8
  32. Roy, M. S.; Sharma, G. D.; Gupta, S. K. Thin Solid Films 1997, 310, 279. https://doi.org/10.1016/S0040-6090(97)00394-5
  33. Sharma, G. D.; Choudhary, V. S.; Roy, M. S. Sol. Energy Mater. Sol. Cells 2007, 91, 275. https://doi.org/10.1016/j.solmat.2006.09.006
  34. Suresh, P.; Sharma, S. K.; Roy, M. S.; Sharma, G. D. Synthetic Metals 2009, 159, 52. https://doi.org/10.1016/j.synthmet.2008.07.022
  35. Jung, I. H.; Yu, J.; Jeong, E.; Kim, J.; Kwon, S.; Kong, H.; Lee, K.; Woo, H. Y.; Shim, H.-K. Chem. Eur. J. 2010, 16, 3743. https://doi.org/10.1002/chem.200903064
  36. Kwon, J.; Lee, W.; Kim, J.-Y.; Noh, S.; Lee, C.; Hong, J.-I. New J. Chem. 2010, 34, 744. https://doi.org/10.1039/b9nj00431a
  37. Hassan, J.; Lavenot, L.; Gozzi, C.; Lemaire, M. Tetrahedron Lett. 1999, 40, 857. https://doi.org/10.1016/S0040-4039(98)02538-6
  38. Sariciftci, N. S.; Smilowitz, L.; Heeger, A. J.; Wudl, F. Science 1992, 258, 1474. https://doi.org/10.1126/science.258.5087.1474
  39. Sun, X.; Zhou, Y.; Wu, W.; Liu, Y.; Tian, W.; Yu, G.; Qiu, W.; Chen, S.; Zhu, D. J. Phys. Chem. B 2006, 110, 7702. https://doi.org/10.1021/jp060128o
  40. Tamayo, A.; Kent, T.; Tantitiwat, M.; Dante, M. A.; Rogers, J.; Nguyen, T.-Q. Energy Environ. Sci. 2009, 2, 1180. https://doi.org/10.1039/b912824g

Cited by

  1. Lead candidates for high-performance organic photovoltaics from high-throughput quantum chemistry – the Harvard Clean Energy Project vol.7, pp.2, 2014, https://doi.org/10.1039/C3EE42756K
  2. TPD- and DPP-based Small Molecule Donors Containing Pyridine End Groups for Organic Photovoltaic Cells vol.37, pp.2, 2016, https://doi.org/10.1002/bkcs.10647