DOI QR코드

DOI QR Code

Biochemical Analysis of Physiological Stress Induced by High Frequency Sound Treatment in the Beet Armyworm, Spodoptera exigua

고주파 처리에 따른 파밤나방(Spodoptera exigua)의 생리적 스트레스의 생화학적 분석

  • Kim, Yong-Gyun (Department of Bioresource Sciences, Andong National University) ;
  • Son, Ye-Rim (Department of Bioresource Sciences, Andong National University) ;
  • Seo, Sam-Yeol (Department of Bioresource Sciences, Andong National University) ;
  • Park, Bok-Ri (Department of Bioresource Sciences, Andong National University) ;
  • Park, Jung-A (Department of Bioresource Sciences, Andong National University)
  • 김용균 (안동대학교 자연과학대학 생명자원과학과) ;
  • 손예림 (안동대학교 자연과학대학 생명자원과학과) ;
  • 서삼열 (안동대학교 자연과학대학 생명자원과학과) ;
  • 박복리 (안동대학교 자연과학대학 생명자원과학과) ;
  • 박정아 (안동대학교 자연과학대학 생명자원과학과)
  • Received : 2012.01.28
  • Accepted : 2012.07.03
  • Published : 2012.09.01

Abstract

High frequency sounds disrupt physiological processes, such as feeding behavior, development and immune responses of Spodoptera exigua. We analyzed high frequency sounds with respect to biochemical changes in S. exigua. High frequency sound (5,000 Hz, 95 dB) suppressed protein synthesis and secretion of midgut epithelium. It also significantly inhibited a digestive enzyme activity of phospholipase $A_2$. The gene expression of three different heat shock proteins and apolipophorin III was altered, particularly in midgut tissue in response to high frequency sound treatments. High frequency sound treatments significantly increased sugar and lipid levels in hemolymph plasma. These results suggest that high frequency sounds are a physiological stress that induces biochemical changes in S. exigua.

고주파 처리는 파밤나방(Spodoptera exigua)의 생리변화를 유발시켜 섭식행동, 발육 및 면역반응의 변화를 초래한다. 본 연구는 이러한 고주파의 영향을 파밤나방의 생화학적 변화를 통해 분석했다. 고주파(5,000 Hz, 95 dB) 처리는 중장 상피세포의 단백질 합성과 분비를 억제시켰다. 또한 이 고주파 처리는 중장의 인지질분해(phospholipase $A_2$) 소화효소의 활성을 현격하게 억제시켰다. 고주파 처리는 세 종류의 열충격단백질과 지질운송단백질(apolipophorin III)의 유전자 발현을 변동시켰고 이러한 변화는 중장 조직에서 뚜렷했다. 혈림프 혈장에 존재하는 지질 및 유리당의 함량이 고주파 처리에 의해 현격하게 증가했다. 이러한 결과는 고주파 처리가 파밤나방의 체내 생화학적 변화를 유발시켜 생리적 교란을 유도하는 스트레스로 작용한다는 것을 제시하고 있다.

Keywords

References

  1. Adamo, S.A., J.L. Roberts, R.H. Easy and N.W. Ross. 2008. Competition between immune function and lipid transport for the protein apolipophorin III leads to stress-induced immunosuppression in crickets. J. Exp. Biol. 211: 531-538. https://doi.org/10.1242/jeb.013136
  2. Applebaum, S.W. 1985. Biochemistry of digestion. pp. 279-311. In Comprehensive insect physiology, biochemistry and pharmacology, vol. 4, eds. by G.A. Kerkut and L.I. Gilbert. Pergamon Press, Oxford, UK.
  3. Arrese, E.L., L.E. Canavoso, Z.E. Jouni, J.E. Pennington, K. Tsuchida and M.A. Wells. 2001. Lipid storage and mobilization in insects: current status and future directions. Insect Biochem. Mol. Biol. 31: 7-17. https://doi.org/10.1016/S0965-1748(00)00102-8
  4. Baker, J.E. and S.M. Woo. 2005. Purification, partial characterization, and postembryonic levels of amylases from Sitophilus oryzae and Sitophilus granarius. Arch. Insect Biochem. Physiol. 2: 415-428.
  5. Bradford, M.M. 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein dye binding. Anal. Biochem. 71: 248-254.
  6. Dennis, E.A. 1994. Diversity of group types, regulation and function of phospholipase $A_{2}$. J. Biochem. 269: 13057-13060.
  7. Feder, M.E. and G.E. Hofmann. 1999. Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu. Rev. Physiol. 61: 243-282. https://doi.org/10.1146/annurev.physiol.61.1.243
  8. Gäde, G., K.H. Hoffmann and J.H. Spring. 1997. Hormonal regulation in insects: facts, gaps and future direction. Physiol. Rev. 77: 963-1032. https://doi.org/10.1152/physrev.1997.77.4.963
  9. Goh, H.G., S.G. Lee, B P. Lee, G.M. Choi and J.H. Kim. 1990. Simple mass-rearing of beet armyworm, Spodoptera exigua. Kor. J. Appl. Entomol. 29: 180-183.
  10. Halwani, A.E. and G.B. Dunphy. 1999. Apolipophorin-III in Galleria mellonella potentiates hemolymph lytic activity. Dev. Comp. Immunol. 23: 563-570. https://doi.org/10.1016/S0145-305X(99)00037-3
  11. Halwani, A.E., D.F. Niven and G.B. Dunphy. 2000. Apolipophorin- III and the interactions of lipoteichoic acid with the immediate immune responses of Galleria mellonella. J. Invertebr. Pathol. 76: 233-241. https://doi.org/10.1006/jipa.2000.4978
  12. Hartl, F.U. and M. Hayar-Hartl. 2002. Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295: 1852-1858. https://doi.org/10.1126/science.1068408
  13. Haskell, P.T. 1957. Stridulation and associated behaviour in certain Orthoptera. I. Analysis of the stridulation of, and behaviour between males. Anim. Behav. 5: 139-148. https://doi.org/10.1016/S0950-5601(57)80020-3
  14. Jang, Y. 2011. Insect communication: concepts, channels and contexts. Kor. J. Appl. Entomol. 50: 383-393. https://doi.org/10.5656/KSAE.2011.09.0.52
  15. Khasar, S.G., P.G. Green and J.D. Leine. 2005. Repeated sound stress enhances inflammatory pain in the rat. Pain 116: 79-86. https://doi.org/10.1016/j.pain.2005.03.040
  16. Kim, J. and Y. Kim. 2011. Three metabolites from an entomopathogenic bacterium, Xenorhabdus nematophila, inhibit larval development of Spodoptera exigua (Lepidoptera: Noctuidae) by inhibiting a digestive enzyme, phospholipase $A_{2}$. Insect Sci. 18: 282-288. https://doi.org/10.1111/j.1744-7917.2010.01363.x
  17. McIver, S.B. 1985. Mechanoreception. pp. 71-132. In Comprehensive insect physiology, biochemistry and pharmacology, vol. 6, eds. by G.A. Kerkut and L.I. Gilbert. Pergamon Press, Oxford, UK.
  18. Park, J., J. Seok, S.V. Prasad and Y. Kim. 2011a. Sound stress alters physiological processes in digestion and immunity and enhances insecticidal susceptibility of Spodoptera exigua. Kor. J. Appl. Entomol. 50: 39-46. https://doi.org/10.5656/KSAE.2011.02.0.002
  19. Park, J., S.V. Prasad and Y. Kim. 2011b. Effects of sound stress on physiological processes of the American leafminer, Liriomyza trifolii, and proteomic analysis. Kor. J. Appl. Entomol. 50: 131-139. https://doi.org/10.5656/KSAE.2011.06.0.18
  20. Radvanyi, F., L. Jordan, F. Russo-Marie and C. Bon. 1989. A sensitive and continuous fluorometric assay for phospholipase $A_{2}$using pyrene-labeled phospholipids in the presence of serum albumin. Anal. Biochem. 177: 103-109. https://doi.org/10.1016/0003-2697(89)90022-5
  21. SAS Institute, Inc. 1989. SAS/STAT User's Guide, Release 6.03, Ed. Cary, NC, USA.
  22. Seok, J., T. Kang and Y. Kim. 2010. Sound stress induces developmental alterations and enhances insecticide susceptibility in the green peach aphid, Myzus persicae. Kor. J. Pestic. Sci. 14: 415-420.
  23. Sismondo, E. 1980. Physical characteristics of the drumming of Meconema thalassinum. J. Insect Physiol. 26: 209-212. https://doi.org/10.1016/0022-1910(80)90082-7
  24. Shrestha, S., Y. Park, D. Stanley and Y. Kim. 2010. Genes encoding phospholipase $A_{2}$ mediate insect nodulation reactions to bacterial challenge. J. Insect Physiol. 56: 324-332. https://doi.org/10.1016/j.jinsphys.2009.11.008
  25. Son, Y., J. Hwang and Y. Kim. 2012. Functional study of the gene encoding apolipophorin III in development and immune responses in the beet armyworm, Spodoptera exigua. J. Asia Pac. Entomol. 15: 106-112. https://doi.org/10.1016/j.aspen.2011.09.006
  26. Stanley, D.W. 2006. Prostaglandins and other eicosanoids in insects: biological significance. Annu. Rev. Entomol. 51: 25-44. https://doi.org/10.1146/annurev.ento.51.110104.151021
  27. Stephen, R.O. and J.C. Hartley. 1995. Sound production in crickets. J. Exp. Biol. 198: 2139-2152.
  28. Tera, W.R. 1990. Evolution of digestive systems in insects. Annu. Rev. Entomol. 35: 181-200. https://doi.org/10.1146/annurev.en.35.010190.001145
  29. Velki, M., D. Kodrik, J. Vecera, B.K. Hackenberger and R. Socha. 2011. Oxidative stress elicited by insecticides: a role for the adipokinetic hormone. Gen. Comp. Endocrinol. 172: 77-84. https://doi.org/10.1016/j.ygcen.2010.12.009
  30. Walter, S. and J. Buchner. 2002. Molecular chaperons-cellular machines for protein folding. Angew. Chem. Int. Ed. 41: 1098-1113. https://doi.org/10.1002/1521-3773(20020402)41:7<1098::AID-ANIE1098>3.0.CO;2-9
  31. Weers, P.M.M. and R.O. Ryan. 2006. Apolipophorin III: role model apolipophorin. Insect Biochem. Mol. Biol. 36: 231-240. https://doi.org/10.1016/j.ibmb.2006.01.001
  32. Xu, Q., Q. Zou, H. Zheng, F. Zhang, B. Tang and S. Wang. 2011. Three heat shock proteins from Spodoptera exigua: Gene cloning, characterization and comparative stress response during heat and cold shocks. Comp. Biochem. Physiol. B 159: 92-102.
  33. Young, D. and H.C. Bennet-Clark. 1995. The role of the tymbal in cicada sound production. J. Exp. Biol. 198: 1001-1019.

Cited by

  1. Effect of Stress Sound on the Development of the Black Soldier Fly, Hermetia illucens vol.52, pp.3, 2013, https://doi.org/10.5656/KSAE.2013.06.0.025