DOI QR코드

DOI QR Code

Comparative Analysis of Benzylideneacetone-derived Compounds on Insect Immunosuppressive and Antimicrobial Activities

벤질리덴아세톤 유도 화합물들의 곤충면역반응 억제와 살균력 비교 분석

  • Seo, Sam-Yeol (Department of Bioresource Sciences, Andong National University) ;
  • Chun, Won-Su (Department of Bioresource Sciences, Andong National University) ;
  • Hong, Yong-Pyo (Department of Applied Chemistry, Andong National University) ;
  • Yi, Young-Keun (Department of Bioresource Sciences, Andong National University) ;
  • Kim, Yong-Gyun (Department of Bioresource Sciences, Andong National University)
  • 서삼열 (안동대학교 자연과학대학 생명자원과학과) ;
  • 천원수 (안동대학교 자연과학대학 생명자원과학과) ;
  • 홍용표 (안동대학교 자연과학대학 응용화학과) ;
  • 이영근 (안동대학교 자연과학대학 생명자원과학과) ;
  • 김용균 (안동대학교 자연과학대학 생명자원과학과)
  • Received : 2012.05.07
  • Accepted : 2012.07.02
  • Published : 2012.09.01

Abstract

Benzylinedeneacetone (BZA) is a bacterial metabolite which is synthesized by at least two entomopathogenic bacteria, namely Xenorhabdus nematophila and Photorhabdus temperata subsp. temperata. It has been shown to possess inhibitory effects on insect cellular and humoral immune responses as well as antimicrobial activities against various species of bacteria and fungi. However, its relatively high phytotoxicity, and nonsystematic effect have thus far prevented its development into an optimal pesticide. This study screened five different BZA derivatives in order to select an optimal compound, which would have relatively high solubility and low phytotoxicity while retaining sufficient degrees of the immunosuppressive and antimicrobial activities associated with BZA. Hydroxylation of the benzene ring of BZA was found to significantly suppress its immunosuppressive and antimicrobial activities. Transformation of the ketone of BZA by carboxylation also suppressed the inhibitory activities. However, a shortening of the aliphatic chain of BZA into acetate form (4-hydroxyphenylacetic acid: HPA) did not decrease the inhibitory activity. HPA also showed much less phytotoxicity against the hot pepper plant Capsicum annuum, when compared to BZA. This study identified an optimal BZA derivative, which exhibited relatively little phytotoxicity, but retained a high degree of inhibitory activity to suppress insect immune responses and antimicrobial activities against plant pathogens.

벤질리덴아세톤(benzylinedeneacetone: BZA)은 두 곤충병원세균인 Xenorhabdus nematophila와 Photorhabdus temperata subsp. temperata에서 유래된 대사산물의 일종이다. 이 물질은 곤충의 세포성 및 체액성 면역반응을 억제하며 또한 다양한 세균이나 곰팡이에 대해 항생효과를 갖고 있다. 그러나 이 물질이 갖는 비교적 높은 약해와 낮은 식물체 침투력은 효과적 농약으로 개발하는 데 어려움을 주고 있다. 본 연구에서는 다섯 개의 서로 다른 BZA 유사체를 스크리닝하여 면역억제 및 항균활성을 유지하면서 비교적 용해도가 높고 약해가 낮은 물질을 선발하였다. BZA의 벤젠 고리에 수산기가 붙은 유도체는 면역억제 및 항균활성이 뚜렷이 낮아졌다. 또한 BZA의 케톤기를 카르복실기로 변형하면 면역억제와 항균활성을 잃게 되었다. 그러나 BZA의 탄화수소 사슬을 짧게 하여 형성된 아세테이트 유도체인 4-hydroxyphenylacetic acid (HPA)는 면역억제와 항균활성을 잃지 않았다. 또한 HPA는 BZA 보다 고추(Capsicum annuum)에 대해 약해가 낮은 것으로 나타났다. 이 연구는 낮은 약해를 유발하면서 높은 곤충면역억제와 식물병원균에 대해 높은 항균활성을 보이는 BZA 유도체를 선발하였다.

Keywords

References

  1. Akhurst, R.J. 1980. Morphological and functional dimorphism in Xenorhabdus spp., bacteria symbiotically associated with the insect pathogenic nematodes Neoaplectana and Heterorhabditis. J. Gen. Microbiol. 121: 303-309.
  2. Broderick, N.A., K.F. Raffa and J. Handelsman. 2006. Midgut bacteria required for Bacillus thuringiensis insecticidal activity. Proc. Natl. Acad. Sci. USA. 103: 15196-15199. https://doi.org/10.1073/pnas.0604865103
  3. Carton, Y., F. Frey, D.W. Stanley, E. Vass and J.N. Antony. 2002. Dexamethasone inhibition of the cellular immune response of Drosophila melanogaster against a parasitoid. J. Parasitol. 88: 405-407. https://doi.org/10.1645/0022-3395(2002)088[0405:DIOTCI]2.0.CO;2
  4. Cho, S. and Y. Kim. 2004. Hemocyte apoptosis induced by entomo -pathogenic bacteria, Xenorhabdus and Photorhabdus, in Bombyx mori. J. Asia Pac. Entomol. 7: 195-200. https://doi.org/10.1016/S1226-8615(08)60215-0
  5. Gill, S.S., E.A. Cowles and P.V. Pietrantonio. 1992. The mode of action of Bacillus thuringiensis endotoxins. Annu. Rev. Entomol. 37: 615-636. https://doi.org/10.1146/annurev.en.37.010192.003151
  6. Goh, H.G., S.G. Lee, B P. Lee, G.M. Choi and J.H. Kim. 1990. Simple mass-rearing of beet armyworm, Spodoptera exigua. Kor. J. Appl. Entomol. 29: 180-183.
  7. Hoffman, C., H. Vanderbruggen, H. Hofte, J. Van Rie, S. Jansens and H. Van Mellaert. 1988. Specificity of Bacillus thuringiensis delta -endotoxins is correlated with the presence of high-affinity binding sites in the brush border membrane of target insect midguts. Proc. Natl. Acad. Sci. USA 85: 7844-7848. https://doi.org/10.1073/pnas.85.21.7844
  8. Jenkins, J.I. and D.H. Dean. 2000. Exploring the mechanism of action of insecticidal proteins by genetic engineering methods. pp. 33-54. In Genetic engineering: principles and methods, vol. 22. ed. by K. Setlow. Plenum, New York.
  9. Jeon, M., W. Cheon. Y. Kim, Y.P. Hong and Y. Yi. 2012. Control effects of indole isolated from Xenorhabdus nematophila K1 on the diseases of red pepper. Res. Plant Dis. 18: 17-23. https://doi.org/10.5423/RPD.2012.18.1.017
  10. Ji, D., Y. Yi, G.H. Kang, Y.H. Choi, P. Kim, N.I. Baek and Y. Kim. 2004. Identification of an antibacterial compound, benzylideneacetone, from Xenorhabdus nematophila against major plant-pathogenic bacteria. FEMS Microbiol. Lett. 239: 241-248. https://doi.org/10.1016/j.femsle.2004.08.041
  11. Jiang, H. and M.R. Kanost. 2000. The clip-domain family of serine proteinases in arthropods. Insect Biochem. Mol. Biol. 30: 95-105. https://doi.org/10.1016/S0965-1748(99)00113-7
  12. Jung, S. and Y. Kim. 2006. Synergistic effect of entomopathogenic bacteria (Xenorhabdus sp. and Photorhabdus temperata ssp. temperata) on the pathogenicity of Bacillus thuringiensis ssp. aizawai against Spodoptera exigua (Lepidoptera: Noctuidae). Environ. Entomol. 35: 1584-1589. https://doi.org/10.1603/0046-225X(2006)35[1584:SEOEBX]2.0.CO;2
  13. Kang, S., S. Han and Y. Kim. 2004. Identification of an entomopathogenic bacterium, Photorhabdus temperata subsp. temperata, in Korea. J. Asia Pac. Entomol. 7: 331-337. https://doi.org/10.1016/S1226-8615(08)60235-6
  14. Ko, H.S., R.D. Jin, H.B. Krishnan, S.B. Lee and K.Y. Kim. 2009. Biocontrol ability of Lysobacter antibioticus HS124 against Phytophthora blight is mediated by the production of 4-hydroxyphenylacetic aid and several lytic enzymes. Curr. Microbiol. 59: 608-615. https://doi.org/10.1007/s00284-009-9481-0
  15. Mao, S., S.J. Lee, H. Hwangbo, Y.W. Kim, K.H. Park, G.S. Cha, R.D. Park and K.Y. Kim. 2006. Isolation and characterization of antifungal substances from Burkholderia sp. culture broth. Curr. Microbiol. 53: 358-364. https://doi.org/10.1007/s00284-005-0333-2
  16. Merchant, D., R.L. Ertl, S.I. Rennard, D.W. Stanley and J.S. Miller. 2008. Eicosanoids mediate insect hemocyte migration. J. Insect Physiol. 54: 215-221. https://doi.org/10.1016/j.jinsphys.2007.09.004
  17. Miller, J.S. 2005. Eicosanoids influence in vitro elongation of plasmatocytes from the tobacco hornworm, Manduca sexta. Arch. Insect Biochem. Physiol. 59: 42-51. https://doi.org/10.1002/arch.20052
  18. Miller, J.S., T. Nguyen and D.W. Stanley-Samuelson. 1994. Eicosanoids mediate insect nodulation responses to bacterial infections. Proc. Natl. Acad. Sci. USA. 91: 12418-12422. https://doi.org/10.1073/pnas.91.26.12418
  19. Ohtani, K., S. Fujioka, T. Kawano, A. Shimada and Y. Kimura. 2011. Nematicidal activities of 4-hydroxyphenylacetic acid and oidiolactone D produced by the fungus Oidiodendron sp. Z. Naturforsch. C. 66: 31-34. https://doi.org/10.5560/ZNC.2011.66c0031
  20. Park, S.J., M.H. Jun, W. Chun, J.A. Seo, Y. Yi, and Y. Kim. 2010. Control effects of benzylideneacetone isolated from Xenorhabdus nematophila K1 on the disease of redpepper plants. Res. Plant Dis. 16: 170-175. https://doi.org/10.5423/RPD.2010.16.2.170
  21. Park, Y. and Y. Kim. 2000. Eicosanoids rescue Spodoptera exigua infected with Xenorhabdus nematophila, the symbiotic bacteria to the entomopathogenic nematode Steinernema carpocapsae. J. Insect Physiol. 46: 1469-1476. https://doi.org/10.1016/S0022-1910(00)00071-8
  22. Radvanyi, F., L. Jordan, F. Russo-Marie and C. Bon. 1989. A sensitive and continuous fluorometric assay for phospholipase $A_{2}$2 using pyrene-labeled phospholipids in the presence of serum albumin. Anal. Biochem. 177: 103-109. https://doi.org/10.1016/0003-2697(89)90022-5
  23. Richards, G.R. and H.B. Goodrich-Blair. 2009. Masters of conquest and pillage: Xenorhabdus nematophila global regulators control transitions from virulence to nutrient acquisition. Cell Microbiol. 11: 1025-1033. https://doi.org/10.1111/j.1462-5822.2009.01322.x
  24. Russel, A.D. and J.R. Furr. 1996. Biocides: mechanisms of antifungal action and fungal resistance. Sci. Prog. 79: 27-48.
  25. SAS Institute, Inc. 1989. SAS/STAT user's guide, release 6.03, Ed. Cary, N.C.
  26. Seo, S.Y., M.Y. Jeon, W.S. Chun, S.H. Lee, J.A. Seo, Y.G. Yi, Y.P. Hong and Y. Kim. 2011. Structure-activity analysis of benzylideneacetone for effective control of plant pests. Kor. J. Appl. Entomol. 50: 107-113. https://doi.org/10.5656/KSAE.2011.04.0.15
  27. Seo, S.Y., S.H. Lee, Y.P. Hong and Y. Kim. 2012. Chemical identification and biological characterization of phospholipase A2 inhibitors synthesized by entomopathogenic bacteria, Xenorhabdus nematophila and Photorhabdus temperata subsp. temperata. Appl. Environ. Microbiol. 78: 3816-3823. https://doi.org/10.1128/AEM.00301-12
  28. Shrestha, S. and Y. Kim. 2008. Eicosanoids mediate prophenoloxidase release from oenocytoids in the beet armyworm Spodoptera exigua. Insect Biochem. Mol. Biol. 38: 99-112. https://doi.org/10.1016/j.ibmb.2007.09.013
  29. Shrestha, S. and Y. Kim. 2009. Biochemical characteristics of immune -associated phospholipase $A_{2}$ and its inhibition by an entomopathogenic bacterium, Xenorhabdus nematophila. J. Microbiol. 47: 774-782. https://doi.org/10.1007/s12275-009-0145-3
  30. Shrestha, S., D. Stanley and Y. Kim. 2011. $PGE_{2}$ induces oenocytoid cell lysis a G protein-coupled receptor in the beet armyworm, Spodoptera exigua. J. Insect Physiol. 57: 1568-1576. https://doi.org/10.1016/j.jinsphys.2011.08.010
  31. Srikanth, K., J. Park, D.W. Stanley and Y. Kim. 2011. Plasmatocyte -spreading peptide influences hemocyte behavior via eicosanoids. Arch. Insect Biochem. Physiol. 78: 145-160. https://doi.org/10.1002/arch.20450
  32. Stanley, D. and Y. Kim. 2011. Prostaglandins and their receptors in insect biology. Front. Endocrinol. 2:105. doi: 10.3389/fendo.2011. 00105.
  33. Yajima, M., M. Takada, N. Takahashi, H. Kikuchi, S. Natori, Y. Oshima and S. Kurata. 2003. A newly established in vitro culture using transgenic Drosophila reveals functional coupling between the phospholipase $A_{2}$-generated fatty acid cascade and lipopolysaccharide- dependent activation of the immune deficiency (imd) pathway in insect immunity. Biochem. J. 37: 205-210.
  34. Zhang, X., N.B. Griko, S.K. Corona and L.A. Bulla, Jr. 2008. Enhanced exocytosis of the receptor BT-$R_{1}$ induced by the Cry1Ab toxin of Bacillus thuringiensis directly correlates to the execution of cell death. Comp. Biochem. Physiol. B 149: 581-588. https://doi.org/10.1016/j.cbpb.2007.12.006