DOI QR코드

DOI QR Code

Reuse of Spent FCC Catalyst for Removing Trace Olefins from Aromatics

  • Pu, Xin (The State Key Laboratory of Chemical Engineering, East China University of Science and Technology) ;
  • Luan, Jin-Ning (The State Key Laboratory of Chemical Engineering, East China University of Science and Technology) ;
  • Shi, Li (The State Key Laboratory of Chemical Engineering, East China University of Science and Technology)
  • Received : 2012.03.21
  • Accepted : 2012.05.10
  • Published : 2012.08.20

Abstract

Pretreatment of spent FCC catalyst and its application in remove trace olefins in aromatics were investigated in this research. The most effective pretreatment route of spent FCC catalyst was calcining at $700^{\circ}C$ for 1 h, washing with 5% oxalic acid solution in ultrasonic reactor and dried. Treated spent FCC catalyst was modified with metal halides, then to prepare catalyst to remove trace olefins in aromatics. X-ray diffraction, Pyridine-FTIR, $N_2$ adsorption-desorption and inductively coupled plasma optical emission spectrometer (ICP-OES) were used to investigate the pretreatment process. The result showed that the performance of the treated spent FCC catalyst was much greater than that of the spent FCC catalyst, which indicted the possibility and improvement of this research.

Keywords

References

  1. Cerqueira, H. S.; Caeiro, G.; Costa, L.; Ramoa Ribeiro, F. Journal of Molecular Catalysis A: Chemical 2008, 292, 1-13. https://doi.org/10.1016/j.molcata.2008.06.014
  2. Furimsky, E. Catal. Today 1996, 30, 223-286. https://doi.org/10.1016/0920-5861(96)00094-6
  3. Marafi, M.; Stanislaus, A. Resources, Conservation and Recycling 2008, 52, 859-873. https://doi.org/10.1016/j.resconrec.2008.02.004
  4. Marafi, M.; Stanislaus, A. J. Hazard Mater. 2003, 101, 123-132. https://doi.org/10.1016/S0304-3894(03)00145-6
  5. Aung, K. M. M.; Ting, Y.-P. J. Biotechnol. 2005, 116, 159-170. https://doi.org/10.1016/j.jbiotec.2004.10.008
  6. Beolchini, F.; Fonti, V.; Ferella, F.; Veglio, F. J. Hazard Mater. 2010, 178, 529-534. https://doi.org/10.1016/j.jhazmat.2010.01.114
  7. Pradhan, D.; Kim, D. J.; Roychaudhury, G.; Lee, S. W. J. Environ. Sci. Heal. A 2010, 45, 476-482. https://doi.org/10.1080/10934520903539424
  8. Santhiya, D.; Ting, Y.-P. J. Biotechnol. 2005, 116, 171-184. https://doi.org/10.1016/j.jbiotec.2004.10.011
  9. Abdel-Aal, E. A.; Rashad, M. M. Hydrometallurgy 2004, 74, 189-194. https://doi.org/10.1016/j.hydromet.2004.03.005
  10. Al-Mansi, N. M.; Monem, N. M. A. Waste Manage. 2002, 22, 85-90. https://doi.org/10.1016/S0956-053X(01)00024-1
  11. Kim, S. C.; Shim, W. G. J. Hazard Mater. 2008, 154, 310-316. https://doi.org/10.1016/j.jhazmat.2007.10.027
  12. Li, L.; Ge, J.; Wu, F.; Chen, R.; Chen, S.; Wu, B. J. Hazard Mater. 2010, 176, 288-293. https://doi.org/10.1016/j.jhazmat.2009.11.026
  13. Chen, H. L.; Tseng, Y. S.; Hsu, K. C. Cement. Concrete Comp. 2004, 26, 657-664. https://doi.org/10.1016/S0958-9465(03)00048-9
  14. Pacewska, B.; Bukowska, M.; Wilinska, I. J. Therm. Anal. Calorim. 2000, 60, 257-264. https://doi.org/10.1023/A:1010130214853
  15. Pacewska, B.; Wilinska, I.; Bukowska, M. J. Therm. Anal. Calorim. 2000, 60, 71-78. https://doi.org/10.1023/A:1010120518062
  16. Su, N.; Chen, Z. H.; Fang, H. Y. Cement. Concrete Comp. 2001, 23, 111-118. https://doi.org/10.1016/S0958-9465(00)00074-3
  17. Acchar, W.; Rulff, B. M.; Segadaes, A. M. Appl. Clay Sci. 2009, 42, 657-660. https://doi.org/10.1016/j.clay.2008.06.007
  18. Liu, X. M.; Liang, H. N.; Li, L. A.; Yang, T. T.; Yan, Z. F. Chinese J. Catal. 2010, 31, 833-838.
  19. Vasireddy, S.; Campos, A.; Miamee, E.; Adeyiga, A.; Armstrong, R.; Allison, J. D.; Spivey, J. J. Appl. Catal. a-Gen. 2010, 372, 184-190. https://doi.org/10.1016/j.apcata.2009.10.031
  20. Chen, C. W.; Wu, W. J.; Zeng, X. S.; Jiang, Z. H.; Shi, L. Ind. Eng. Chem. Res. 2009, 48, 10359-10363. https://doi.org/10.1021/ie901062c
  21. Mohamed, L. K.; Shaban, S. A.; El-Kady, F. Y. Petrol. Sci. Technol. 2010, 28, 322-330. https://doi.org/10.1080/10916460903058103
  22. Park, K.; Jeon, H. J.; Jung, K. S.; Woo, S. I. Ind. Eng. Chem. Res. 2003, 42, 736-742. https://doi.org/10.1021/ie020515u
  23. Sutkar, V. S.; Gogate, P. R. Chem. Eng. J. 2009, 155, 26-36. https://doi.org/10.1016/j.cej.2009.07.021
  24. Wu, W. J.; Chen, C. W.; Wang, X.; Shi, L. China Pet. Process Pe. 2009, 4, 23-26.
  25. Maurizio, L.; Loretta, S.; Giuliano, P.; Luca, P.; Renzo, G. Journal of Molecular Catalysis A:Chemical 1999, 145, 237-244. https://doi.org/10.1016/S1381-1169(99)00019-9
  26. Mishra, D.; Kim, D. J.; Ralph, D. E.; Alm, J. G.; Rhee, Y. H. J. Hazard Mater. 2008, 152, 1082-1091. https://doi.org/10.1016/j.jhazmat.2007.07.083
  27. Awate, S. V.; Waghmode, S. B.; Agashe, M. S. Catal. Commun. 2004, 5, 407-411. https://doi.org/10.1016/j.catcom.2004.04.005