DOI QR코드

DOI QR Code

A Prototype Architecture of an Interactive Service System for Digital Hologram Videos

디지털 홀로그램 비디오를 위한 인터랙티브 서비스 시스템의 프로토타입 설계

  • Received : 2012.05.31
  • Accepted : 2012.07.11
  • Published : 2012.07.30

Abstract

The purpose of this paper is to propose a service system for a digital hologram video, which has not been published yet. This system assumes the existing service frame for 2-dimensional or 3-dimensional image/video, which includes data acquisition, processing, transmission, reception, and reconstruction. This system also includes the function to service the digital hologram at the viewer's view point by tracking the viewer's face. For this function, the image information at the virtual view point corresponding to the viewer's view point is generated to get the corresponding hologram. Here in this paper, only a prototype that includes major functions of it is implemented, which includes camera system for data acquisition, camera calibration and image rectification, depth/intensity image enhancement, intermediate view generation, digital hologram generation, and holographic image reconstruction by both simulation and optical apparatus. The proposed prototype system was implemented and the result showed that it takes about 352ms to generate one frame of digital hologram and reconstruct the image by simulation, or 183ms to reconstruct image by optical apparatus instead of simulation.

본 논문은 디지털 홀로그램 비디오를 서비스할 수 있는 서비스 시스템을 제안하는 것을 목적으로 한다. 이 시스템은 현존하는 2차원 또는 3차원 영상/비디오를 서비스하는 시스템의 프레임, 즉 데이터 획득, 처리, 전송, 수신, 복원의 과정을 그대로 따른다고 가정한다. 이 시스템은 또한 시청자의 시점을 추적하여 그 시점에 해당하는 디지털 홀로그램을 서비스하는 인터랙티브 동작 기능을 포함하고 있는데, 이 기능을 위해서 시청자의 시점에 해당하는 가상시점의 영상 정보를 생성하고, 이를 홀로그램으로 만들어 사용한다. 본 논문에서는 이 시스템의 주요 동작만을 포함하는 프로토타입을 구현하며, 이 시스템에는 데이터 획득을 위한 카메라 시스템, 카메라 캘리브레이션과 영상보정, 깊이와 빛의 세기 영상의 화질개선, 중간시점 영상 생성, 디지털 홀로그램 생성, 시뮬레이션과 광학장치에 의한 홀로그램 영상복원 기능을 포함한다. 제안한 프로토타입 시스템을 구현한 결과 한 프레임의 디지털 홀로그램을 생성하고 시뮬레이션에 의해 영상을 복원하는 데까지 약 352ms가 소요되었으며, 시뮬레이션 복원 대신 광학장치로 복원할 경우는 약 183ms의 시간이 소요되었다.

Keywords

References

  1. T. Motoki, H. Isono, and I. Yuyama, "Present Status of Three-Dimensional Television Research," Proc. IEEE 83(7): 1009-1021(July 1995). https://doi.org/10.1109/5.390119
  2. Edited by O. Schreer, P. Kauff, and T. Sikora, 3D Video Communications, John Wiley & Sons Ltd., Atrium, England, 2005.
  3. TTA, "3DTV Broadcasting Safety Guideline," TTAK.KO-07.0086, 2010. 12. 23.
  4. S. A. Benton and V. M. Bove, Jr., Holographic Imaging, John Wiley and Sons Inc., Hoboken NJ, 2008.
  5. N. Costa and A. Cartaxo, Advances in Lasers and Electro Optics, INTECH, April 2010.
  6. Kinect data sheet, http://www.microsoftstore.com/store/msstore/en_US/pd /Kinect-for-Xbox-360/productID.216507400.
  7. SR4000 Data Sheet, http://www.mesa-imaging.ch/prodview-4k.php, MESA Imaging, Oct. 2010.
  8. J. I. Gil and M. B. Kim, "Perceptual Quality improvement of Stereoscopic Image," IPCV 2011, pp. 278-282, July 2011.
  9. M. B. Kim and S. E. Jang, "Depth Map Interpolation using High Frequency Components," Intl. Workshop on Advanced Image Technology, pp. 646-649, Jan. 2012.
  10. J. M. Lim and J. S. Yoo, Super-resolution Algorithm using Discrete Wavelet Transform for Single Image," Korean J. of Broadcasting, Vol. 17, No. 2, pp. 344-353, March 2012.
  11. J. M. Koo, J. W. Lee, Y. H. Seo, H. J. Choi, J. S. Yoo, and D. W. Kim, "Intermediate Depth Image Generation using Disparity Increment of Stereo Depth Images," Korean J. of Broadcasting, Vol. 17, No. 2, pp. 363-373, March 2012.
  12. T. J. Kim, E. Y. Chang, N. H. Hur, J. W. Kim, and J. S. Yoo, "Virtual Viewpoint Image Synthesis Algorithm using Multi-view Geometry," Korean J. of Broadcasting, Vol. 34, No. 12, pp. 1154-1166, Dec. 2009.
  13. T. Shimobaba, T. Ito, "An efficient computational method suitable for hardware of computer-generated hologram with phase computation by addition", Computer Physics Communications, vol. 138, pp. 44-52, 2001. https://doi.org/10.1016/S0010-4655(01)00189-8
  14. Y. H. Seo, H. J. Choi, J. S. Yoo, and D. W. Kim, "Cell-based hardware architecture for full-parallel generation algorithm of digital holograms", Optics Express, Vol. 19. Issue 9, pp. 8750-8761, 2011. https://doi.org/10.1364/OE.19.008750
  15. H. J. Choi, Y. H. Seo, J. S. Yoo, and D. W. Kim, "Digital watermarking technique for holography interference patterns in a transform domain," OPTICS and LASERS in ENGINEERING, Vol. 46, No. 4, pp. 343-348, Jan. 2008. https://doi.org/10.1016/j.optlaseng.2007.11.005
  16. Y. H. Seo, H. J. Choi, J. S. Yoo, G. S. Lee, C. H. Kim, S. H. Lee, S. H. Lee, and D. W. Kim, "Digital hologram compression technique by eliminating spatial correlations based on MCTF," OPTICS COMMUNICATIONS, Vol. 283, pp. 4261-4270, July 2010. https://doi.org/10.1016/j.optcom.2010.06.052
  17. H. J. Choi, Y. H. Seo, and D. W. Kim, "A Hybrid Encryption Technique for Digital Holography using DCT and DWT," Intl. J. of KIMICS, Vol. 9, No. 3, pp. 271-275, June 2011.
  18. U. Schnar and W. Jueptner, Digital Holohtaphy, Springer, Berlin, Germany, 2005.
  19. T. Shimobaba, T. Ito, N, Masuda, Y, Ichihashi, and N. Takada, "Fast calculation of computer-generated-hologram on AMD HD5000 series GPU and OpenCL", Optics Express, vol. 18, no. 10, pp. 9955-9960, May. 2010. https://doi.org/10.1364/OE.18.009955
  20. Y. Pan, X. Xu, S. Solanki, X. Liang, R. Bin, A. Tanjung, C. Tan, and T.-C. Chong, "Fast CGH computation using S-LUT on GPU", Optics Express, vol. 17, No. 21, pp. 18543-18555, Oct. 2009. https://doi.org/10.1364/OE.17.018543