• Title/Summary/Keyword: intermediate view point image generation

Search Result 5, Processing Time 0.017 seconds

Intermediate View Image and its Digital Hologram Generation for an Virtual Arbitrary View-Point Hologram Service (임의의 가상시점 홀로그램 서비스를 위한 중간시점 영상 및 디지털 홀로그램 생성)

  • Seo, Young-Ho;Lee, Yoon-Hyuk;Koo, Ja-Myung;Kim, Dong-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.1
    • /
    • pp.15-31
    • /
    • 2013
  • This paper proposes an intermediate image generation method for the viewer's view point by tracking the viewer's face, which is converted to a digital hologram. Its purpose is to increase the viewing angle of a digital hologram, which is gathering higher and higher interest these days. The method assumes that the image information for the leftmost and the rightmost view points within the viewing angle to be controlled are given. It uses a stereo-matching method between the leftmost and the rightmost depth images to obtain the pseudo-disparity increment per depth value. With this increment, the positional informations from both the leftmost view point and the rightmost view point are generated, which are blended to get the information at the wanted intermediate viewpoint. The occurrable dis-occlusion region in this case is defined and a inpainting method is proposed. The results from implementing and experimenting this method showed that the average image qualities of the generated depth and RGB image were 33.83[dB] and 29.5[dB], respectively, and the average execution time was 250[ms] per frame. Also, we propose a prototype system to service digital hologram interactively to the viewer by using the proposed intermediate view generation method. It includes the operations of data acquisition for the leftmost and the rightmost viewpoints, camera calibration and image rectification, intermediate view image generation, computer-generated hologram (CGH) generation, and reconstruction of the hologram image. This system is implemented in the LabView(R) environments, in which CGH generation and hologram image reconstruction are implemented with GPGPUs, while others are implemented in software. The implemented system showed the execution speed to process about 5 frames per second.

Fast Generation of Intermediate View Image Using GPGPU-Based Disparity Increment Method (GPGPU 기반의 변위증분 방법을 이용한 중간시점 고속 생성)

  • Koo, Ja-Myung;Seo, Young-Ho;Kim, Dong-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.8
    • /
    • pp.1908-1918
    • /
    • 2013
  • Free-view, auto-stereoscopic video service is a next generation broadcasting system which offers a three-dimensional video, images of the various point are needed. This paper proposes a method that parallelizes the algorithm for arbitrary intermediate view-point image fast generation and make it faster using General Propose Graphic Processing Unit(GPGPU) with help of the Compute Unified Device Architecture(CUDA). It uses a parallelized stereo-matching method between the leftmost and the rightmost depth images to obtain disparity information and It use data calculated disparity increment per depth value. The disparity increment is used to find the location in the intermediate view-point image for each depth in the given images. Then, It is eliminate to disocclusions complement each other and remaining holes are filled image using hole-filling method and to get the final intermediate view-point image. The proposed method was implemented and applied to several test sequences. The results revealed that the quality of the generated intermediate view-point image corresponds to 30.47dB of PSNR in average and it takes about 38 frames per second to generate a Full HD intermediate view-point image.

Virtual View-point Depth Image Synthesis System for CGH (CGH를 위한 가상시점 깊이영상 합성 시스템)

  • Kim, Taek-Beom;Ko, Min-Soo;Yoo, Ji-Sang
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.7
    • /
    • pp.1477-1486
    • /
    • 2012
  • In this paper, we propose Multi-view CGH Making System using method of generation of virtual view-point depth image. We acquire reliable depth image using TOF depth camera. We extract parameters of reference-view cameras. Once the position of camera of virtual view-point is defined, select optimal reference-view cameras considering position of it and distance between it and virtual view-point camera. Setting a reference-view camera whose position is reverse of primary reference-view camera as sub reference-view, we generate depth image of virtual view-point. And we compensate occlusion boundaries of virtual view-point depth image using depth image of sub reference-view. In this step, remaining hole boundaries are compensated with minimum values of neighborhood. And then, we generate final depth image of virtual view-point. Finally, using result of depth image from these steps, we generate CGH. The experimental results show that the proposed algorithm performs much better than conventional algorithms.

Intermediate Depth Image Generation using Disparity Increment of Stereo Depth Images (스테레오 깊이영상의 변위증분을 이용한 중간시점 깊이영상 생성)

  • Koo, Ja-Myung;Seo, Young-Ho;Choi, Hyun-Jun;Yoo, Ji-Sang;Kim, Dong-Wook
    • Journal of Broadcast Engineering
    • /
    • v.17 no.2
    • /
    • pp.363-373
    • /
    • 2012
  • This paper proposes a method to generate a depth image at an arbitrary intermediate view-point, which is targeting a video service for free-view, auto-stereoscopy, holography, etc. It assumes that the leftmost and the rightmost depth images are given and they both have been camera-calibrated and image-rectified. This method calculates and uses a disparity increment per depth value. In this paper, it is obtained by stereo matching for the given two depth image by considering more general cases. The disparity increment is used to find the location in the intermediate view-point depth image (IVPD) for each depth in the given images. Thus, this paper finds two IVPDs, from left image and from right image. Noises are removed and holes are filled in each IVPDs and the two results are combined to get the final IVPD. The proposed method was implemented and applied to several test sequences. The results revealed that the quality of the generated IVPD corresponds to 33.84dB of PSNR in average and it takes about 1 second to generate a HD IVPD. We evaluate that this image quality is quite good by considering the low correspondency among the left images, intermediate images, and the right images in the test sequences. If the execution speed is improved, the proposed method can be a very useful method to generate an IVPD at an arbitrary view-point, we believe.

A Prototype Architecture of an Interactive Service System for Digital Hologram Videos (디지털 홀로그램 비디오를 위한 인터랙티브 서비스 시스템의 프로토타입 설계)

  • Seo, Young-Ho;Lee, Yoon-Hyuk;Yoo, Ji-Sang;Kim, Man-Bae;Choi, Hyun-Jun;Kim, Dong-Wook
    • Journal of Broadcast Engineering
    • /
    • v.17 no.4
    • /
    • pp.695-706
    • /
    • 2012
  • The purpose of this paper is to propose a service system for a digital hologram video, which has not been published yet. This system assumes the existing service frame for 2-dimensional or 3-dimensional image/video, which includes data acquisition, processing, transmission, reception, and reconstruction. This system also includes the function to service the digital hologram at the viewer's view point by tracking the viewer's face. For this function, the image information at the virtual view point corresponding to the viewer's view point is generated to get the corresponding hologram. Here in this paper, only a prototype that includes major functions of it is implemented, which includes camera system for data acquisition, camera calibration and image rectification, depth/intensity image enhancement, intermediate view generation, digital hologram generation, and holographic image reconstruction by both simulation and optical apparatus. The proposed prototype system was implemented and the result showed that it takes about 352ms to generate one frame of digital hologram and reconstruct the image by simulation, or 183ms to reconstruct image by optical apparatus instead of simulation.