DOI QR코드

DOI QR Code

Rock Deformation and Formation of LPO of Minerals in the Upper Mantle: Implications for Seismic Anisotropy

맨틀상부에서 암석의 변형 및 광물의 격자선호방향(LPO) 형성과 지진파 비등방성과의 연계성

  • Jung, Hae-Meong (School of Earth and Environmental Sciences, Seoul National University)
  • 정해명 (서울대학교 지구환경과학부)
  • Received : 2012.04.02
  • Accepted : 2012.05.01
  • Published : 2012.06.30

Abstract

Olivine is a dominant mineral in the upper mantle and is elastically very anisotropic. When olivine is deformed under stress at high pressure and high temperature, lattice preferred orientation (LPO) is formed. It is known that the LPO of olivine is affected by water, stress, and pressure. In this paper, I reviewed the papers dealing with the effects of water, stress, and pressure on the LPO of olivine, summarized the papers on the LPOs of olivine in natural mantle rocks, and discussed its implications for seismic anisotropy in the upper mantle. In addition, I also described four types of LPOs of orthopyroxene recently found in natural spinel lherzolite.

감람석은 맨틀 상부의 주요 광물이고, 탄성적으로 매우 비균질하다. 맨틀암석이 고압고온에서 변형될 때, 이러한 감람석이 배열되어 격자선호방향(LPO, Lattice Preferred Orientation)이 형성된다. 감람석의 격자선호방향은 압력, 응력, 그리고 감람석 내부의 물(OH)의 양에 따라 크게 영향을 받을 수 있다. 이 논문에서는 물, 응력, 그리고 압력이 어떻게 감람석의 격자선호방향(LPO)의 형성에 영향을 주는지에 대해 그동안 발표된 논문들을 리뷰했고, 자연 맨틀암석에서 발견된 감람석의 격자선호방향들을 요약했으며, 감람석의 격자선호방향과 맨틀상부에서 나타나는 지진파의 비등방성과의 연계성에 대해 토의하였다. 그리고 최근에 맨틀암석에서 발견된 사방휘석의 네 가지 격자선호방향들을 기술하였다.

Keywords

References

  1. Abramson, E.H., Brown, J.M., Slutsky, L.J., and Zaug, J., 1997. The elastic constants of San Carlos olivine to 17 GPa. J. Geophys. Res.-Solid Earth, 102, 12253-12263. https://doi.org/10.1029/97JB00682
  2. Ando, M., Ishikawa, Y., and Yamazaki, F., 1983. Shear wave polarization anisotropy in the upper mantle beneath Honshu, Japan. J. Geophys. Res., 88, 5850-5864. https://doi.org/10.1029/JB088iB07p05850
  3. Ben Ismail, W., and Mainprice, D., 1998. An olivine fabric database: an overview of upper mantle fabrics and seismic anisotropy. Tectonophysics, 296, 145-157. https://doi.org/10.1016/S0040-1951(98)00141-3
  4. Blacic, J.D., 1972. Effects of water in the experimental deformation of olivine, in: Heard, H.C., Borg, I.Y., Carter, N.L., Raleigh, C.B. (Eds.), Flow and Fracture of Rocks. American Geophysical Union, Washington DC, 109-115.
  5. Buiskool Toxopeus, J.M.A., 1976. Petrofabrics, microtextures and dislocation substructures of olivine in a peridotite mylonite (Alpe Arami, Switzerland). Leidse Geol. Meded., 51, 1-36.
  6. Buiskool Toxopeus, J.M.A., 1977. Fabric development of olivine in a peridotite mylonite. Tectonophysics, 39, 55-71. https://doi.org/10.1016/0040-1951(77)90088-9
  7. Carter, N.L. and Ave Lallemant, H.G., 1970. High temperature flow of dunite and peridotite. Bulletin of the Geological Society of America, 81, 2181-2202. https://doi.org/10.1130/0016-7606(1970)81[2181:HTFODA]2.0.CO;2
  8. Chopra, P.N. and Paterson, M.S., 1981. The experimental deformation of dunite. Tectonophysics, 78, 453-473. https://doi.org/10.1016/0040-1951(81)90024-X
  9. Chopra, P.N. and Paterson, M.S., 1984. The role of water in the deformation of dunite. Journal of Geophysical Research, 89, 7861-7876. https://doi.org/10.1029/JB089iB09p07861
  10. Christensen, N.I. and Lundquist, S.M., 1982. Pyroxene orientation within the upper mantle. Geological Society of America Bulletin, 93, 279-288. https://doi.org/10.1130/0016-7606(1982)93<279:POWTUM>2.0.CO;2
  11. Couvy, H., Frost, D.J., Heidelbach, F., Nyilas, K., Ungar, T., Mackwell, S., and Cordier, P., 2004. Shear deformation experiments of forsterite at 11GPa-1400 degrees C in the multianvil apparatus. European Journal of Mineralogy, 16, 877-889. https://doi.org/10.1127/0935-1221/2004/0016-0877
  12. Fouch, M.J., and Fischer, K.M., 1996. Mantle anisotropy beneath northwest Pacific subduction zones. J. Geophys. Res.-Solid Earth, 101, 15987-16002. https://doi.org/10.1029/96JB00881
  13. Frese, K., Trommsdorff, V., and Kunze, K., 2003. Olivine [100] normal to foliation: lattice preferred orientation in prograde garnet peridotite formed at high $H_2O$ activity, Cima di Gagnone (Central Alps). Contrib. Mineral. Petrol., 145, 75-86. https://doi.org/10.1007/s00410-002-0434-x
  14. Frohlich, C., 1989. The nature of deep-focus earthquakes. Annual Review of Earth and Planetary Sciences, 17, 227-254. https://doi.org/10.1146/annurev.ea.17.050189.001303
  15. Gaherty, J.B., 2001. Seismic evidence for hotspot-induced bouyant flow beneath the Peykjanes ridge. Science, 293, 1645-1647. https://doi.org/10.1126/science.1061565
  16. Green, H.W. and Burnley, P.C., 1989. A new self-organizing mechanism for deep-focus earthquakes Nature, 341, 733-737. https://doi.org/10.1038/341733a0
  17. Green, H.W. and Jung, H., 2005. Fluids, faulting, and flow. Elements, 1, 31-37. https://doi.org/10.2113/gselements.1.1.31
  18. Green, H.W., Young, T.E., Walker, D., and Scholz, C.H., 1990. Anticrack-associated faulting at very high-pressure in natural olivine. Nature, 348, 720-722. https://doi.org/10.1038/348720a0
  19. Hidas, K., Falus, G., Szabo, C., Szabo, P.J., Kovacs, I., and Foldes, T., 2007. Geodynamic implications of flattened tabular equigranular textured peridotites from the Bakony-Balaton Highland Volcanic Field (Western Hungary). Journal of Geodynamics, 43, 484-503. https://doi.org/10.1016/j.jog.2006.10.007
  20. Hirth, G., and Kohlstedt, D.L., 1996. Water in the oceanic upper mantle: Implications for rheology, melt extraction and the evolution of the lithosphere. Earth and Planetary Science Letters, 144, 93-108. https://doi.org/10.1016/0012-821X(96)00154-9
  21. Ishii, K., and Sawaguchi, T., 2002. Lattice- and shape-preferred orientation of orthopyroxene porphyroclasts in peridotites: an application of two-dimensional numerical modeling. Journal of Structural Geology, 24, 517-530. https://doi.org/10.1016/S0191-8141(01)00078-5
  22. Jamtveit, B., Brooker, R., Brooks, K., Larsen, L.M., and Pedersen, T., 2001. The water content of olivines from the North Atlantic Volcanic Province. Earth and Planetary Science Letters, 186, 401-415. https://doi.org/10.1016/S0012-821X(01)00256-4
  23. Jung, H., 2009. Deformation fabrics of olivine in Val Malenco peridotite found in Italy and implications for the seismic anisotropy in the upper mantle. Lithos, 109, 341-349. https://doi.org/10.1016/j.lithos.2008.06.007
  24. Jung, H., 2011. Seismic anisotropy produced by serpentine in mantle wedge. Earth and Planetary Science Letters, 307, 535-543. https://doi.org/10.1016/j.epsl.2011.05.041
  25. Jung, H., Fei, Y.W., Silver, P.G., and Green, H.W., 2009b. Frictional sliding in serpentine at very high pressure. Earth and Planetary Science Letters, 277, 273-279. https://doi.org/10.1016/j.epsl.2008.10.019
  26. Jung, H. and Green, H.W., 2004. Experimental faulting of serpentinite during dehydration: Implications for earthquakes, seismic low-velocity zones, and anomalous hypocenter distributions in subduction zones. International Geology Review, 46, 1089-1102. https://doi.org/10.2747/0020-6814.46.12.1089
  27. Jung, H., Green, H.W., and Dobrzhinetskaya, L.F., 2004. Intermediate-depth earthquake faulting by dehydration embrittlement with negative volume change. Nature, 428, 545-549. https://doi.org/10.1038/nature02412
  28. Jung, H. and Karato, S., 2001a. Water-induced fabric transitions in olivine. Science, 293, 1460-1463. https://doi.org/10.1126/science.1062235
  29. Jung, H. and Karato, S.I., 2001b. Effects of water on dynamically recrystallized grain-size of olivine. Journal of Structural Geology, 23, 1337-1344. https://doi.org/10.1016/S0191-8141(01)00005-0
  30. Jung, H., Katayama, I., Jiang, Z., Hiraga, T., and Karato, S., 2006. Effect of water and stress on the lattice-preferred orientation of olivine. Tectonophysics, 421, 1-22. https://doi.org/10.1016/j.tecto.2006.02.011
  31. Jung, H., Lee, J., Ko, B., Jung, S., Park, M., Cao, Y., and Song, S.G., 2012. Analysis of C-type olivine fabrics obtained from North Qaidam UHP belt in NW China and its implications for recycling water into deep mantle. Earth and Planetary Science Letters, submitted.
  32. Jung, H., Mo, W., and Choi, S.H., 2009c. Deformation microstructures of olivine in peridotite from Spitsbergen, Svalbard and implications for seismic anisotropy. Journal of Metamorphic Geology, 27, 707-720. https://doi.org/10.1111/j.1525-1314.2009.00838.x
  33. Jung, H., Mo, W., and Green, H.W., 2009a. Upper mantle seismic anisotropy resulting from pressure-induced slip transition in olivine. Nature Geoscience, 2, 73-77. https://doi.org/10.1038/ngeo389
  34. Jung, H., Park, M., Jung, S., and Lee, J., 2010. Lattice preferred orientation, water content, and seismic anisotropy of orthopyroxene. Journal of Earth Science, 21, 555-568. https://doi.org/10.1007/s12583-010-0118-9
  35. Karato, S., 2008. Deformation of earth materials. An introduction to the rheology of solid earth. Cambridge.
  36. Karato, S. and Jung, H., 2003. Effects of pressure on high-temperature dislocation creep in olivine. Philosophical Magazine, A, 83, 401-414. https://doi.org/10.1080/0141861021000025829
  37. Karato, S., Paterson, M.S., and FitzGerald, J.D., 1986. Rheology of synthetic olivine aggregates: Influence of water and grain size. Journal of Geophysical Research, 91, 8151-8176. https://doi.org/10.1029/JB091iB08p08151
  38. Karato, S.I., Jung, H., Katayama, I., and Skemer, P., 2008. Geodynamic significance of seismic anisotropy of the upper mantle: New insights from laboratory studies. Annual Review of Earth and Planetary Sciences, 36, 59-95. https://doi.org/10.1146/annurev.earth.36.031207.124120
  39. Katayama, I., Jung, H., and Karato, S.I., 2004. New type of olivine fabric from deformation experiments at modest water content and low stress. Geology, 32, 1045-1048. https://doi.org/10.1130/G20805.1
  40. Katayama, I., Karato, S.I., and Brandon, M., 2005. Evidence of high water content in the deep upper mantle inferred from deformation microstructures. Geology, 33, 613-616. https://doi.org/10.1130/G21332.1
  41. Kneller, E.A., van Keken, P.E., Karato, S., and Park, J., 2005. B-type olivine fabric in the mantle wedge: Insights from high-resolution non-Newtonian subduction zone models. Earth and Planetary Science Letters, 237, 781-797. https://doi.org/10.1016/j.epsl.2005.06.049
  42. Kneller, E.A., van Keken, P.E., Katayama, I., and Karato, S., 2007. Stress, strain, and B-type olivine fabric in the fore-arc mantle: Sensitivity tests using high-resolution steady-state subduction zone models. J. Geophys. Res.-Solid Earth, 112.
  43. Lee, J. and Jung, H., 2011. B-type LPO of olivine in diamond-bearing garnet peridotites from Finsch, South Africa. AGU Fall meeting abstract, San Francisco.
  44. Linckens, J., Herwegh, M., Muntener, O., and Mercolli, I., 2011. Evolution of a polymineralic mantle shear zone and the role of second phases in the localization of deformation. J. Geophys. Res.-Solid Earth, 116.
  45. Long, M.D. and Becker, T.W., 2010. Mantle dynamics and seismic anisotropy. Earth and Planetary Science Letters, 297, 341-354. https://doi.org/10.1016/j.epsl.2010.06.036
  46. Long, M.D. and Silver, P.G., 2008. The subduction zone flow field from seismic anisotropy: A global view. Science, 319, 315-318. https://doi.org/10.1126/science.1150809
  47. Long, M.D. and van der Hilst, R.D., 2005. Upper mantle anisotropy beneath Japan from shear wave splitting. Phys. Earth Planet. Inter., 151, 206-222. https://doi.org/10.1016/j.pepi.2005.03.003
  48. Mckel, J.R., 1969. Structural petrology of the garnet-peridotite of Alpe Arami (Ticino, Switzerland). Leidse Geol. Meded., 42, 61-130.
  49. Mackwell, S.J., Kohlstedt, D.L., and Paterson, M.S., 1985. The role of water in the deformation of olivine single crystals. Journal of Geophysical Research-Solid Earth and Planets, 90, 1319-1333.
  50. Mainprice, D., Barruol, G., and Ismail, W.B., 2000. The seismic anisotropy of the earth's mantle from single crystal to polycrystal., in: Karato, S., Forte, A.M., Liebermann, R.C., Masters, G., Stixrude, L. (Eds.), Earth's deep interior American Geophysical Union, Geophysical Monograph, 117, pp. 237-264.
  51. Margheriti, L., Nostro, C., Cocco, M., and Amato, A., 1996. Seismic anisotropy beneath the Northern Apennines (Italy) and its tectonic implications. Geophysical Research Letters, 23, 2721-2724. https://doi.org/10.1029/96GL02519
  52. Mehl, L., Hacker, B.R., Hirth, G., and Kelemen, P.B., 2003. Arc-parallel flow within the mantle wedge: Evidence from the accreted Talkeetna arc, south central Alaska. J. Geophys. Res.-Solid Earth, 108.
  53. Mei, S. and Kohlstedt, D.L., 2000. Influence of water on plastic deformation of olivine aggregates 2. Dislocation creep regime. J. Geophys. Res.-Solid Earth, 105, 21471-21481. https://doi.org/10.1029/2000JB900180
  54. Michibayashi, K., Tasaka, M., Ohara, Y., Ishii, T., Okamoto, A., and Fryer, P., 2007. Variable microstructure of peridotite samples from the southern Mariana Trench: Evidence of a complex tectonic evolution. Tectonophysics, 444, 111-118. https://doi.org/10.1016/j.tecto.2007.08.010
  55. Mizukami, T., Wallis, S.R., and Yamamoto, J., 2004. Natural examples of olivine lattice preferred orientation patterns with a flow-normal a-axis maximum. Nature, 427, 432-436. https://doi.org/10.1038/nature02179
  56. Montagner, J.P. and Guillot, L., 2000. Seismic anisotropy in the Earth's mantle. In: Boschi, E., Ekstrm, G., Morelli, A. (Eds.), Problems in Geophysics for the New Millennium, pp. 217-253.
  57. Nakajima, J. and Hasegawa, A., 2004. Shear-wave polarization anisotropy and subduction-induced flow in the mantle wedge of northeastern Japan. Earth and Planetary Science Letters, 225, 365-377. https://doi.org/10.1016/j.epsl.2004.06.011
  58. Nicolas, A. and Christensen, N.I., 1987. Formation of anisotropy in upper mantle peridotites: A review. American Geophysical Union, 16, 111-123.
  59. Ohuchi, T., Kawazoe, T., Nishihara, Y., Nishiyama, N., and Irifune, T., 2011. High pressure and temperature fabric transitions in olivine and variations in upper mantle seismic anisotropy. Earth and Planetary Science Letters, 304, 55-63. https://doi.org/10.1016/j.epsl.2011.01.015
  60. Park, J. and Levin, V., 2002. Seismic Anisotropy: Tracing Plate Dynamics in the Mantle. Science, 296, 485-489. https://doi.org/10.1126/science.1067319
  61. Park, M., Jung, H., and Kil, Y., 2012. Lattice preferred orientation of olivine and orthopyroxene in spinel peridotites from the Rio Grande rift, New Mexico. Journal of Geophysical Research, submitted.
  62. Raleigh, C.B. and Paterson, M.S., 1965. Experimental deformation of serpentinite and its tectonic implications. Journal of Geophysical Research, 70, 3965-3985. https://doi.org/10.1029/JZ070i016p03965
  63. Raterron, P., Chen, J., Li, L., Weidner, D., and Cordier, P., 2007. Pressure-induced slip-system transition in forsterite: Single-crystal rheological properties at mantle pressure and temperature. American Mineralogist, 92, 1436-1445. https://doi.org/10.2138/am.2007.2474
  64. Raterron, P., Chen, J.H., Geenen, T., and Girard, J., 2011. Pressure effect on forsterite dislocation slip systems: Implications for upper-mantle LPO and low viscosity zone. Phys. Earth Planet. Inter., 188, 26-36. https://doi.org/10.1016/j.pepi.2011.06.009
  65. Ringwood, A.E., 1970. Phase transformations and the constutution of the mantle. Phys. Earth Planet. Inter., 3, 109-155. https://doi.org/10.1016/0031-9201(70)90047-6
  66. Russo, R.M. and Silver, P.G., 1994. Trench-parallel flow beneath the Nazca plate from seismic anisotropy. Science, 263, 1105-1111. https://doi.org/10.1126/science.263.5150.1105
  67. Savage, M.K., 1999. Seismic anisotropy and mantle deformation: What have we learned from shear wave splitting? Reviews of Geophysics, 37, 65-106. https://doi.org/10.1029/98RG02075
  68. Sawaguchi, T., 2004. Deformation history and exhumation process of the horoman Peridotite Complex, Hokkaido, Japan. Tectonophysics, 379, 109-126. https://doi.org/10.1016/j.tecto.2003.10.011
  69. Scholz, C.H., 2002. The Mechanics of earthquakes and faulting. Cambridge.
  70. Silver, P.G., 1996. Seismic anisotropy beneath the continents: Probing the depths of geology. Annual Review of Earth and Planetary Sciences, 24, 385. https://doi.org/10.1146/annurev.earth.24.1.385
  71. Skemer, P., Katayama, I., and Karato, S.I., 2006. Deformation fabrics of the Cima di Gagnone peridotite massif, Central Alps, Switzerland: evidence of deformation at low temperatures in the presence of water. Contrib. Mineral. Petrol., 152, 43-51. https://doi.org/10.1007/s00410-006-0093-4
  72. Skemer, P., Warren, J.M., Kelemen, P.B., and Hirth, G., 2010. Microstructural and rheological evolution of a mantle shear zone. Journal of Petrology, 51, 43-53. https://doi.org/10.1093/petrology/egp057
  73. Smith, G.P., Wiens, D.A., Fischer, K.M., Dorman, L.M., Webb, S.C., and Hildebrand, J.A., 2001. A complex pattern of mantle flow in the Lau backarc. Science, 292, 713-716. https://doi.org/10.1126/science.1058763
  74. Soustelle, V., Tommasi, A., Demouchy, S., and Ionov, D.A., 2009. Deformation and fluid-rock interaction in the supra-subduction mantle: microstructures and water contents in peridotite xenoliths from the Avacha volcano, Kamchatka. Journal of Petrology, 51, 363-394.
  75. Tasaka, M., Michibayashi, K., and Mainprice, D., 2008. B-type olivine fabrics developed in the fore-arc side of the mantle wedge along a subducting slab. Earth and Planetary Science Letters, 272, 747-757. https://doi.org/10.1016/j.epsl.2008.06.014
  76. Tommasi, A., Vauchez, A., and Ionov, D.A., 2008. Deformation, static recrystallization, and reactive melt transport in shallow subcontinental mantle xenoliths (Tok Cenozoic volcanic field, SE Siberia). Earth and Planetary Science Letters, 272, 65-77. https://doi.org/10.1016/j.epsl.2008.04.020
  77. Van der Pluijm, B.A., and Marshak, S., 2004. Earth structure. Norton.
  78. Wallace, P.J., 1998. Water and partial melting in mantle plumes: Inferences from the dissolved H2O concentrations of Hawaiian basaltic magmas. Geophysical Research Letters, 25, 3639-3642. https://doi.org/10.1029/98GL02805
  79. Xu, Z.Q., Wang, Q., Ji, S.C., Chen, J., Zeng, L.S., Yang, J.S., Chen, F.Y., Liang, F.H., and Wenk, H.R., 2006. Petrofabrics and seismic properties of garnet peridotite from the UHP Sulu terrane (China): Implications for olivine deformation mechanism in a cold and dry subducting continental slab. Tectonophysics, 421, 111-127. https://doi.org/10.1016/j.tecto.2006.04.010
  80. Zhang, S.Q. and Karato, S., 1995. Lattice preferred orientation of olivine aggregates deformed in simple shear. Nature, 375, 774-777. https://doi.org/10.1038/375774a0

Cited by

  1. Natural type-C olivine fabrics in garnet peridotites in North Qaidam UHP collision belt, NW China vol.594, 2013, https://doi.org/10.1016/j.tecto.2013.03.025