DOI QR코드

DOI QR Code

우리나라 상부암석권 맨틀: 페리도타이트 포획암으로부터의 고찰

Lithospheric Mantle beneath the Korean Peninsula: Implications from Peridotite Xenoliths in Alkali Basalts

  • 최성희 (충남대학교 자연과학대학 지질환경과학과)
  • Choi, Sung-Hi (Department of Geology & Earth Environmental Sciences, Chungnam National University)
  • 투고 : 2012.04.02
  • 심사 : 2012.04.10
  • 발행 : 2012.06.30

초록

우리나라 백령도, 제주도, 보은, 아산, 평택, 간성일대에는 맨틀 페리도타이트들이 알칼리 현무암류에 포획되어 온 형태로 분포하고 있다. K-Ar 전암연대측정 자료에 의하면 이들 화산암류는 약 0.1-18.9Ma에 분출하였다. 페리도타이트의 광물조합은 감람석-사방휘석-단사휘석-첨정석이며, 함수광물이나 석류석이 보고된 바는 없다. 암석의 종류는 레어조라이트에서 하즈버가이트에 걸쳐있다. 감람석은 $Fo_{88.4-92.0}$이고, 단사휘석은 투휘석, 사방휘석은 엔스터타이트가 풍부하며, 첨정석은 Cr이 풍부하다(Cr# = 7.8-53.6). 주성분 원소함량에 의하면 이들 페리도타이트는 부화된 중앙해령현무암 근원 맨틀로부터 대략 26%까지의 부분용융을 겪은 후에 남은 잔류물로 추정된다. 그러나 맨틀에서의 이차적인 변성교대작용의 흔적이 미량원소의 함량에 기록되어 있는 경우도 있다. 양휘석 지온계에 의하면 우리나라 페리도타이트 포획암의 평형온도는 대략 $850-1050^{\circ}C$ 범위이다. Sr-Nd 동위원소비는 결핍된 중앙해령현무암의 근원맨틀 성분(DMM)에서부터 지구전암(BSE) 성분 값까지 넓은 범위에 걸쳐있어, 오랜 시간의 성장과 진화의 역사를 대변하고 있다. Sr-Nd-Pb 동위원소비에 의하면 우리나라 암석권 맨틀은 대개 맨틀 단성분 중 DMM과 EM2의 혼합으로 설명되며, 상부 대륙지각과 연계될 수 있는 남북 내지는 동서방향으로의 지역성을 기록하고 있지는 않다. 이는 동아시아의 신생대후기 판내부기원 현무암류들이 기록하고 있는 남북간의 이분성과는 매우 대조적인 것으로, 동아시아 연약권 맨틀의 지역성을 시사하고 있다. Os 모델연대에 기초하면 우리나라 암석권 맨틀이 연약권으로부터 분리된 시기는 약 1.8-1.9 Ga로 추정된다.

Peridotite xenoliths hosted by alkali basalts from South Korea occur in Baengnyeong Island, Jeju Island, Boeun, Asan, Pyeongtaek and Ganseong areas. K-Ar whole-rock ages of the basaltic rocks range from 0.1 to 18.9 Ma. The peridotites are dominantly lherzolites and magnesian harzburgites, and the constituent minerals are Fo-rich olivine ($Fo_{88.4-92.0}$), En-rich orthopyroxene, Di-rich clinopyroxene, and Cr-rich spinel (Cr# = 7.8-53.6). Hydrous minerals, such as pargasite and phlogopite, or garnet have not been reported yet. The Korean peridotites are residues after variable degree of partial melting (up to 26%) and melt extraction from fertile MORB mantle. However, some samples (usually refractory harzburgites) exhibit metasomatic enrichment of the highly incompatible elements, such as LREE. Equilibration temperatures estimated using two-pyroxene geothermometry range from ca. 850 to $1050^{\circ}C$. Sr and Nd isotopic compositions in clinopyroxene separates from the Korean peridotites show trends between depleted MORB-like mantle (DMM) and bulk silicate earth (BSE), which can be explained by secondary metasomatic overprinting of a precursor time-integrated depleted mantle. The Korean peridotite clinopyroxenes define mixing trends between DMM and EM2 end members on Sr-Pb and Nd-Pb isotopic correlation diagrams, without any corresponding changes in the basement. This is contrary to what we observe in late Cenozoic intraplate volcanism in East Asia which shows two distinct mantle sources such as a DMM-EM1 array for NE China including Baengnyeong Island and a DMM-EM2 array for Southeast Asia including Jeju Island. This observation suggests the existence of large-scale two distinct mantle domains in the shallow asthenosphere beneath East Asia. The Re-Os model ages on Korean peridotites indicate that they have been isolated from convecting mantle between ca. 1.8 and 1.9 Ga.

키워드

참고문헌

  1. 길영우, 신홍자, 윤성효, 고정선, 안웅산, 2008, 제주도 선흘리 일대에 분포하는 맨틀포획암 내의 광물의 지화학적 특성 연구. 한국광물학회지, 21, 373-382.
  2. 길영우, 이석훈, 2005, 백령도와 보은 지역의 상부맨틀암석 내의 단사휘석의 지화학적 특징. 한국광물학회지, 18, 61-72.
  3. 김윤규, 이대성, 송윤구, 김선억, 1988, 보은지역 조곡리 현무암에 함유된 초염기성 포획암의 암석학. 지질학회지, 24, 57-66.
  4. 신홍자, 길영우, 진명식, 이석훈, 2006, 아산, 평택 지역 상부맨틀 포획암의 암석학적 연구. 지질학회지, 42, 95-113.
  5. 양경희, 남복현, 김진섭, Szabo C., 2009, 제주도 현무암에 포획된 세립질 맨틀 페리도타이트 포획암의 조직적 특성. 한국광물학회지, 22, 1-11.
  6. 양경희, 황병훈, 2005, 제주도 알칼리 현무암에 산출되는 단사휘석의 기원. 한국광물학회지, 18, 33-43.
  7. 유재은, 김선웅, 양경희, 2011, 제주도 맨틀포획암내의 실리카 부화작용: 모달 교대작용의 증거. 암석학회지, 20, 61-75.
  8. 윤성효, 고정선, 안지영, 1998, 제주도 동부 알칼리 현무암내 스피넬-레졸라이트 포획체의 연구. 자원환경지질, 31, 447-458.
  9. Adams, G.E., Bishop, F.C., 1982, Experimental investigation of Ca-Mg exchange between olivine, orthopyroxene and clinopyroxene: potential for geobarometry. Earth and Planetary Science Letters, 57, 241-250. https://doi.org/10.1016/0012-821X(82)90188-1
  10. Adams, G.E., Bishop, F.C., 1986, The olivine-clinopyroxene geobarometer: experimental results in the CaO-FeO-MgO-$SiO_2$ system. Contributions to Mineralogy and Petrology, 94, 230-237. https://doi.org/10.1007/BF00592939
  11. Arai, S., 1994, Characterization of spinel peridotites by olivine-spinel compositional relationships: review and interpretation. Chemical Geology, 113, 191-204. https://doi.org/10.1016/0009-2541(94)90066-3
  12. Arai, S., Kida, M., Abe, N., Yurimoto, H., 2001, Petrology of peridotite xenoliths in alkali basalt (11Ma) from Boun, Korea: an insight into the upper mantle beneath the East Asian continental margin. Journal of Mineralogical and Petrological Sciences, 96, 89-99. https://doi.org/10.2465/jmps.96.89
  13. Bertrand, P., Mercier, J.C., 1985, The mutual solubility of coexisting ortho- and clinopyroxene: toward an absolute geothermometer for the natural system? Earth and Planetary Science Letters, 76, 109-122. https://doi.org/10.1016/0012-821X(85)90152-9
  14. Boyd, F.R., 1989, Compositional distinction between oceanic and cratonic lithosphere. Earth Planetary Science Letters, 96, 15-26. https://doi.org/10.1016/0012-821X(89)90120-9
  15. Brey, G.P., Kohler, T., 1990, Geothermometry in four-phase lherzolite II. New thermometers and practical assessment of existing thermobarometers. Journal of Petrology, 31, 1353-1378. https://doi.org/10.1093/petrology/31.6.1353
  16. Choi, S.H., Jwa, Y.-J., Lee, H.Y., 2001, Geothermal gradient of the upper mantle beneath Jeju Island, Korea: Evidence from mantle xenoliths. Island Arc, 10, 175-193. https://doi.org/10.1046/j.1440-1738.2001.00317.x
  17. Choi, S.H., Kwon, S.-T., 2005, Mineral chemistry of spinel peridotite xenoliths from Baengnyeong Island, South Korea, and its implications for the paleogeotherm of the uppermost mantle. Island Arc, 14, 236-253. https://doi.org/10.1111/j.1440-1738.2005.00469.x
  18. Choi, S.H., Kwon, S.-T., Mukasa, S.B., Sagong, H., 2005, Sr-Nd-Pb isotope and trace element systematics of mantle xenoliths from Late Cenozoic alkaline lavas, South Korea. Chemical Geology, 221, 40-64. https://doi.org/10.1016/j.chemgeo.2005.04.008
  19. Choi, S.H., Lee, J.I., Park, C.-H., Moutte, J., 2002, Geochemistry of peridotite xenoliths in alkali basalts from Jeju Island, Korea. Island Arc, 11, 221-235. https://doi.org/10.1046/j.1440-1738.2002.00367.x
  20. Choi, S.H., Muaksa, S.B., Zhou, X.-H., Xian, X.H., Andronikov, A.V., 2008, Mantle dynamics beneath East Asia constrained by Sr, Nd, Pb and Hf isotopic systematics of ultramafic xenoliths and their host basalts from Hannuoba, North China. Chemical Geology, 248, 40-61. https://doi.org/10.1016/j.chemgeo.2007.10.008
  21. Choi, S.H., Mukasa, S.B., Kwon, S.-T., Andronikov, A.V., 2006, Sr, Nd, Pb and Hf isotopic compositions of late Cenozoic alkali basalts in South Korea: Evidence for mixing between the two dominant asthenospheric mantle domains beneath East Asia. Chemical Geology, 232, 134-151. https://doi.org/10.1016/j.chemgeo.2006.02.014
  22. Chough, S.K., Kwon, S.-T., Ree, J.-H., Choi, D.K., 2000, Tectonic and sedimentary evolution of the Korean peninsula: a review and new view. Earth Science Reviews, 52, 175-235. https://doi.org/10.1016/S0012-8252(00)00029-5
  23. Chung, S.-L., 1999, Trace element and isotope characteristics of Cenozoic basalts around the Tanlu Fault with implications for the eastern plate boundary between North and South China. Journal of Geology, 107, 301-312. https://doi.org/10.1086/314348
  24. Dawson, J.B., 1984, Contrasting types of upper-mantle metasomatism. In: Kornprobst, J. (ed.) Kimberlites II: The mantle and crust-mantle relationships. Amsterdam: Elsevier, New York, p. 289-294.
  25. Dick, H.H.B, Bullen, T., 1984, Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas. Contributions to Mineralogy and Petrology, 86, 54-76. https://doi.org/10.1007/BF00373711
  26. Fei, Y., Bertka, C.M., Mysen, B.O., 1999, Mantle petrology: Field observations and high pressure experimentation. Atribute to Francis R. (Joe) Boyd. The Geochemical Society Special Publication 6, 322 pp.
  27. Flower, M., Tamaki, K., Hoang, N., 1998, Mantle extrusion: a model for dispersed volcanism and DUPAL-like asthenosphere in East Asia and the Western Pacific. In: Flower, M., Chung, S.-L., Lo, C.-H., Lee, T.Y. (eds.), Mantle dynamics and plate interactions in East Asia. Am. Geophys. Union, Geophys. Monogr., vol. 27, p. 67-88.
  28. Frey, F.A., Green, D.H., 1974, The mineralogy, geochemistry and origin of lherzolite inclusion in Victorian basanites. Geochimica et Cosmocimica Acta, 38, 1023-1059. https://doi.org/10.1016/0016-7037(74)90003-9
  29. Frey, F.A., Green, D.H., Roy, S.D., 1978, Integrated models of basalt petrogenesis: A study of quartz tholeiites to olivine melilitites from South Eastern Australia utilizing geochemical and experimental petrological data. Journal of Petrology, 19, 463-513. https://doi.org/10.1093/petrology/19.3.463
  30. Frey, F.A., Prinz, M., 1978, Ultramafic inclusions from San Carlos, Arizona: petrologic and geochemical data bearing on their petrogenesis. Earth and Planetary Science Letters, 38, 129-176. https://doi.org/10.1016/0012-821X(78)90130-9
  31. Gao, S., Rudnick, R.L., Carlson, R.W., McDonough, W.F., Liu, Y.-S., 2002, Re-Os evidence for repalcement of ancient mantle lithosphere beneath the North China craton. Earth and Planetary Science Letters, 198, 307-322. https://doi.org/10.1016/S0012-821X(02)00489-2
  32. Green, D.H., Wallace, M.E., 1988, Mantle metasomatism by ephemeral carbonatite melts. Nature, 336, 459-462. https://doi.org/10.1038/336459a0
  33. Gregoire, M., McInnes, B.I.A., O'Reilly, S.Y., 2001, Hydrous metasomatism of oceanic sub-arc mantle, Lihir, Papua New Guinea: Part 2. Trace element characteristics of slab-derived fluids. Lithos, 59, 91-108. https://doi.org/10.1016/S0024-4937(01)00058-5
  34. Hart, S.R., 1984, A large-scale isotope anomaly in the southern hemisphere mantle. Nature, 309, 753-757. https://doi.org/10.1038/309753a0
  35. Hoang, N., Flower, M., Carlson, R.W., 1996, Major, trace, and isotopic compositions of Vietnamese basalts: interaction of hydrous EM1-rich asthenosphere with thinned Eurasian lithospere. Geochimica et Cosmochimica Acta, 60, 4329-4351. https://doi.org/10.1016/S0016-7037(96)00247-5
  36. Ishii, T., Robinson, P.T., Maekawa, H., Fiske, R., 1992, Petrological studies of peridotites from diapiric serpentinite seamounts in the Izu-Ogasawara-Mariana forearc, Leg 125. In: Proceedings of the ocean drilling program, scientific results 125. Texas A & M University, Ocean Drilling Program, College Station, pp. 445-485.
  37. Kil, Y.-W., 2006, Characteristics of subcontinental lithospheric mantle beneath Baegryeong Island, Korea: Spinel peridotite xenoliths. Island Arc, 15, 269-282. https://doi.org/10.1111/j.1440-1738.2006.00526.x
  38. Kil, Y.-W., 2007, Geochemistry and petrogenesis of spinel lherzolite xenoliths from Boeun, Korea. Journal of Asian Earth Sciences, 29, 29-40. https://doi.org/10.1016/j.jseaes.2005.12.006
  39. Kim, J.-N., Ree, J.-H., Kwon, S.-T., Park, Y., Choi, S.-J., Cheong, C.-S., 2000, The Kyeonggi shear zone of the central Korean peninsula: late orogenic imprint of the north and south China collision. Journal of Geology, 108, 469-478. https://doi.org/10.1086/314412
  40. Kim, S.W., Santosh, M., Park, N., Kwon, S., 2011, Forearc serpentinite melange from the Hongseong suture, South Korea. Gondwana Research, 20, 852-864. https://doi.org/10.1016/j.gr.2011.01.012
  41. Kohler, T., Brey, G.P., 1990, Calcium exchange between olivine and clinopyroxene calibrated as a geobarometer for natural peridotites from 2 to 60 kb with applications. Geochimca et Cosmochimica Acta, 54, 2375-2388. https://doi.org/10.1016/0016-7037(90)90226-B
  42. Lee, H.Y., 1996, Petrochemical study of mantle xenoliths in alkali basalts from South Korea: P/T regime of the upper mantle. International Geology Review, 38, 320-335. https://doi.org/10.1080/00206819709465338
  43. Lee, S.R., Walker, R.J., 2006, Re-Os isotope systematics of mantle xenoliths from South Korea: Evidence for complex growth and loss of lithospheric mantle beneath East Asia. Chemical Geology, 231, 90-101. https://doi.org/10.1016/j.chemgeo.2006.01.003
  44. Maaloe, A., Aoki, K., 1977, The major element composition of the upper mantle estimated from the composition of lherzolites. Contributions to Mineralogy and Petrology, 63, 161-173. https://doi.org/10.1007/BF00398777
  45. McDonough, W.F., 1990, Constraints on the composition of the continental lithospheric mantle. Earth Planetary Science Letters, 101, 1-18. https://doi.org/10.1016/0012-821X(90)90119-I
  46. McKenzie, D.P., O'Nions, R.K., 1983, Mantle reservoirs and ocean island basalts. Nature, 301, 229-231. https://doi.org/10.1038/301229a0
  47. Menzies, M.A., Dupuy, C., 1991, Orogenic massifs: protolith, process and provenance. Journal of Petrology Special Issue: Orogenic lherzolites and mantle processes, pp. 1-16.
  48. Menzies, M.A., Hawkesworth, C.J., 1987, Mantle metasomatism. Academic Press Geology Series. 472 pp.
  49. Mercier, J.-C., 1980, Single-pyroxene thermobarometry. Tectonophysics, 70, 1-37. https://doi.org/10.1016/0040-1951(80)90019-0
  50. Mercier, J.-C., Nicolas, A., 1974, Textures and fabrics of upper-mantle peridotites as illustrated by xenoliths from basalts. Journal of Petrology, 16, 454-487.
  51. Nickel, K.G., 1986, Phase equilibria in the system $SiO_2-MgO-Al_2O_3-CaO-Cr_2O_3$ and their bearing on spinel/garnet lherzolite relationships. N. Jb. Miner. Abh., 155, 259-287.
  52. Nixon, P.H., 1987. Mantle xenoliths. Wiley, UK, 844 pp.
  53. O'Reilly, S.Y., Zhang, M., Griffin, W.L., Begg, G., Hronsky, J., 2009, Ultradeep continental roots and their oceanic remnants: A solution to the geochemical "mantle reservoir" problem? Lithos, 211S, 1043-1054.
  54. Oh, C.W., Rajesh, V.J., Seo, J., Choi, S.-G., Lee, J.H., 2010, Spinel compositions and tectonic relevance of the Bibong ultramafic bodies in the Hongseong collision belt, South Korea. Lithos, 198-208.
  55. Palme, H., Nickel, K.G., 1985, Ca/Al ratio and compositions of the Earth's upper mantle. Geochimica et Cosmochimica Acta, 49, 2123-2132. https://doi.org/10.1016/0016-7037(85)90070-5
  56. Park, K.-H., Park, J.-B., Cheong, C.-S., Oh, C.W., 2005, Sr, Nd and Pb isotopic systematics of the Cenozoic basalts of the Korean Peninsula and their implications for the Permo-Triassic continental collision boundary. Gondwana Research, 8, 529-538. https://doi.org/10.1016/S1342-937X(05)71153-9
  57. Parkinson, I.J., Pearce, J.A., 1998, Peridotites of the Izu-Bonin-Mariana forearc (ODP Leg 125) evidence for mantle melting and melt-mantle interactions in a suprasubduction zone setting. Journal of Petrology, 39, 1577-1618. https://doi.org/10.1093/petroj/39.9.1577
  58. Pearce, J.A., Barker, P.F., Edwards, S.J., Parkinson, I.J., Leat, P.T., 2000, Geochemistry and tectonic significance of peridotites from the South Sandwich arc-basin system, south Atlantic. Contributions to Mineralogy and Petrology, 139, 36-53. https://doi.org/10.1007/s004100050572
  59. Rampone, E., Botazzi, P., Ottolini, L., 1991, Complementary Ti and Zr anomalies in orthopyroxene and clinopyroxene from mantle peridotites. Nature, 354, 518-520. https://doi.org/10.1038/354518a0
  60. Ree, J.-H., Kwon, S.-T., Park, Y., 2001, Pretectonic and posttectonic emplacements of the granitoids in the south central Okcheon belt, South Korea: implications for the timing of strike-slip shearing and thrusting. Tectonics, 20, 850-867. https://doi.org/10.1029/2000TC001267
  61. Robinson, A.J.C., Wood, B.J., 1998, The depth of spinel to garnet transition at the peridotite solidus. Earth and Planetary Science Letters, 164, 277-284. https://doi.org/10.1016/S0012-821X(98)00213-1
  62. Roden, M.F., Shimizu, N., 1993, Ion microprobe analyses bearing on the composition of the upper mantle beneath the Basin and Range and Colorado plateau provinces. Journal of Geophysical Research, 98, 14091-14108. https://doi.org/10.1029/93JB00124
  63. Sachtleben, T.H., Seck, H.A., 1981, Chemical control on the Al-solubility in orthopyroxene and its implications on pyroxene geothermometry. Contributions to Mineralogy and Petrology, 78, 157-165. https://doi.org/10.1007/BF00373777
  64. Shi, L., Francis, D., Ludden, J., Frederiksen, A., Bostock, M., 1998, Xenolith evidence for lithospheric melting above anomaly hot mantle under the northern Canadian Cordillera. Contributions to Mineralogy and Petrology, 131, 39-53. https://doi.org/10.1007/s004100050377
  65. Shirey, S.B., Walker, R.J., 1998, The Re-Os isotope system in cosmochemistry and high temperature geochemistry. Annual Review of Earth Planetary Sciences, 26, 423-500. https://doi.org/10.1146/annurev.earth.26.1.423
  66. Song, Y., Frey, F.A., 1989, Geochemistry of peridotite xenoliths in basalt from Hannuoba, Eastern China: Implications for subcontinental mantle heterogeneity. Geochimica et Cosmocimica Acta, 53, 97-113. https://doi.org/10.1016/0016-7037(89)90276-7
  67. Sun, S.-S., McDonough, W.F., 1989, Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society of London Special Publications, 42, 313-345. https://doi.org/10.1144/GSL.SP.1989.042.01.19
  68. Takahashi, E., 1990, Speculations on the Archean mantle: missing link between komatiite and depleted garnet peridotite. Journal of Geophysical Research, 95, 15941-15954. https://doi.org/10.1029/JB095iB10p15941
  69. Thompson, A.B., 1992, Water in the earth's upper mantle. Nature, 358, 295-302. https://doi.org/10.1038/358295a0
  70. Webb, S.A.C., Wood, B.J., 1986, Spinel-pyroxene-garnet relationships and their dependence on Cr/Al ratio. Contributions to Mineralogy and Petrology, 92, 471-480. https://doi.org/10.1007/BF00374429
  71. Wells, P.R.A., 1977, Pyroxene thermometry in simple and complex systems. Contributions to Mineralogy and Petrology, 62, 129-139. https://doi.org/10.1007/BF00372872
  72. Witt-Eickschen, G., Seck, H.A., 1991, Solubility of Ca and Al in orthopyroxene from spinel peridotite: An improved version of an empirical geothermometer. Contributions to Mineralogy and Petrology, 106, 431-439. https://doi.org/10.1007/BF00321986
  73. Yaxley, G.M., Green, D.H., Kamenetsky, V., 1998, Carbonatite metasomatism in the southeastern Australian lithosphere. Journal of Petrology, 39, 1917-1930. https://doi.org/10.1093/petroj/39.11-12.1917
  74. Zhang M., Suddaby, P., O'Reilly, S.Y., Norman, M., Qiu, J., 2000, Nature of the lithospheric mantle beneath the eastern part of the Central Asian fold belt: mantle xenolith evidence. Tectonophysics, 328, 131-156. https://doi.org/10.1016/S0040-1951(00)00181-5
  75. Zindler, A., Hart, S., 1986, Chemical geodynamics. Annual Review of Earth Planetary Sciences, 14, 493-571. https://doi.org/10.1146/annurev.ea.14.050186.002425
  76. Zou, H., Reid, M.R., Liu, Y., Yao, Y., Xu, X., Fan, Q., 2003, Constraints on the origin of historic potassic basalts from northeast China by U-Th disequilibrium data. Chemical Geology, 200, 189-201. https://doi.org/10.1016/S0009-2541(03)00188-8

피인용 문헌

  1. Phlogopite-Bearing Orthopyroxenite in Andong Ultramafic Complex vol.25, pp.4, 2012, https://doi.org/10.9727/jmsk.2012.25.4.249
  2. Geochemistry of anorthositic xenolith and host tholeiite basalt from Jeju Island, South Korea vol.18, pp.2, 2014, https://doi.org/10.1007/s12303-013-0060-9
  3. Mineral ages and zircon Hf isotopic composition of the Andong ultramafic complex: implications for the evolution of Mesozoic subduction system and subcontinental lithospheric mantle beneath SE Korea vol.151, pp.05, 2014, https://doi.org/10.1017/S0016756813000757
  4. Triassic mafic and intermediate magmatism associated with continental collision between the North and South China Cratons in the Korean Peninsula vol.246-247, 2016, https://doi.org/10.1016/j.lithos.2015.12.026
  5. Petrochemical Characteristics of the Duibaejae Volcanic Rocks from Goseong, Gangwon-do, Korea vol.34, pp.2, 2013, https://doi.org/10.5467/JKESS.2013.34.2.109