• Title/Summary/Keyword: Peridotite xenolith

Search Result 12, Processing Time 0.017 seconds

A Study on the Spinel-Lherzolite Xenolith in the Alkali Basalt from Eastern Cheju Island, Korea (제주도 동부 알칼리 현무암내 스피넬-레졸라이트 포획체의 연구)

  • Yun, Sung Hyo;Koh, Jeong Seon;Anh, Ji Young
    • Economic and Environmental Geology
    • /
    • v.31 no.5
    • /
    • pp.447-458
    • /
    • 1998
  • The spinel Ihelzolite of ultramafic xenoliths are found in the alkali basalt from eastern part of the Cheju island, Korea. The xenolith is are mainly composed of olivine, orthopyroxene, clinopyroxene and spinel. Based on the chemical compositions of the constituent minerals, the ultramafic xenolith belong to upper mantle peridotite. Each minerals have a protogranular texture. Olivine with kink band texture partly shows undulatory extinction. Some clinopyroxenes have spongy textured rims. Brown spinels occur in the interstices between olivine and pyroxene grains. Olivine is mostly forsterite $(Fo_{89-90})$. Orthopyroxene is enstatite $(Wo_{1.3}En_{88.4}Fs_{10.3})$ with 3.87~5.25 wt% $Al_{2}O_{3}$. Clinopyroxene is diopside $(Wo_{48.0}En_{46.2}Fs_{5.8})$ with 6.75~5.03 wt% $Al_{2}O_{3}$. Spinel has the Mg value of 75.9 and its Cr-number is 10.2. According to the PoT estimations for the mantle xenoliths, equilibrium temperatures of the xenoliths range from 1023 to $1038^{\circ}C$ and pressure is 18 kbar. Spinellhelzolite from this area, which is characterized by lower Cr-number (10.2) and homogeneous chemical compositions, supports that these ultramafic xenoliths are derived from the upper mantle.

  • PDF

Petrochemical Characteristics of the Duibaejae Volcanic Rocks from Goseong, Gangwon-do, Korea (강원도 고성 뒤배재 화산암의 암석화학적 특성)

  • Kim, Hwa Sung;Kil, Youngwoo;Lee, Moon Won
    • Journal of the Korean earth science society
    • /
    • v.34 no.2
    • /
    • pp.109-119
    • /
    • 2013
  • Duibaejae basalts from Goseong, Gangwon-do, are divided into the lower basalt and the upper basalt depending on the properties, such as occurrence, mineral compositions, and major and trace compositions of the basalts. The lower basalts have characteristics of agglomerate rocks as well as contain, crustal and mantle xenoliths, and olivine, pyroxene, and plagioclase xenocrysts. The upper basalts with columnar joints contain relatively more mantle xenolith and olivine xenocryst than the lower basalts. The major and trace element compositions suggest that the composition of the upper basalts is close to primary magma composition. Enrichment and depletion patterns of the trace and the rare-earth elements of the lower basalts are similar to those of the upper basalts, whereas the lower basalts are more LREE enriched than the upper basalts. The source magmas of the lower and upper basalts from Duibaejae volcanic edifice were generated from about 0.8-1.2% and 3.7-4.0% batch melting of garnet peridotite, respectively. The abundance of granite xenolith, and plagioclase and quartz xenocrysts with reaction rim indicates that the lower basalts, compared with upper basalts, might have been assimilated with the crustal materials during ascending to surface.

Petrological Study on the Mantle Xenolith from Dongsuak Crater, Jeju Island (제주도 동수악 분화구에서 산출되는 맨틀포획암의 암석학적 연구)

  • Kil, Youngwoo;Hong, Sei Sun;Lee, Choon Oh;Ahn, Ung San
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.3
    • /
    • pp.173-182
    • /
    • 2022
  • Dongsuak crater, located in the mid-mountainous region of Jeju Island, is located at an altitude of about 700 m, and the newly discovered Dongsuak spinel peridotites was enclosed in Dongsuak alkaline basalt. The Dongsuak spinel peridotites are composed of olivine, orthopyroxene, clinopyroxene, and spinel with porphyroclastic texture under the an equilibrium state. The variations of mineral major and trace compositions indicates that the Dongsuak spinel peridotites originate at depth from 66 to 88 km under an equilibrium temperature of about 960℃~1068℃. The Dongsuak spinel peridotites have been undergone about 1~3% fractional melting. The LREE-enriched characteristics indicate that the Dongsuak spinel peridotites have been undergone cryptic metasomatism by silicate melt without new minerals.

Petrological Study on the Mantle Xenolith from Songaksan, Jeju Island (제주도 송악산에 분포하는 맨틀포획암의 암석학적 연구)

  • Youngwoo Kil
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.36 no.4
    • /
    • pp.365-376
    • /
    • 2023
  • Songaksan, formed about 3800 year ago, is one of the tuff rings in the Jeju Island. Mantle xenoliths, spinel peridotites, are enclosed in the Songaksan Trachybasalt. The spinel peridotites are less than 2 cm in size and are composed of olivine, orthopyroxene, clinopyroxene, and spinel. The uniform compositions of the minerals from core to rim indicate that equilibrium was reached in the spinel peridotites before these were enclosed in the host magma. The spinel peridotites originated at depths between 55 and 60 km with equilibrium temperatures ranging from 915 to 968℃. The spinel peridotites from Songaksan reveal porphyroclastic texture with a lot of neoblast minerals. Olivines display strong kink banding, indicating that the upper mantle of Songaksan has been deformed. The spinel peridotites from Songaksan have undergone about 5~7% fractional melting, and cryptic metasomatism by an silicate melt. The period of entrainment and transport of the spinel peridotites in the host magma is about 15 days.

Geochemical Characteristics of Mineral Phases in the Mantle Xenoliths from Sunheul-ri, Jeju Island (제주도 선흘리 일대에 분포하는 맨틀포획암 내의 광물의 지화학적 특성 연구)

  • Kil, Young-Woo;Shin, Hong-Ja;Yun, Sung-Hyo;Koh, Jeong-Seon;Ahn, Ung-San
    • Journal of the Mineralogical Society of Korea
    • /
    • v.21 no.4
    • /
    • pp.373-382
    • /
    • 2008
  • First reported geochemical characteristics of mantle xneoliths (spinel peridotites) from Sunheul-ri, Jeju Island, provide important clues for understanding the lithosphere composition, equilibrium temperature, and the period of entrainment and transport of the xenoliths in the host magma. Core and rim of mineral phases in the xenoliths are constant chemical compositions as $Fo_{89-90}$ of olivines. The ranges of equilibrium temperature, obtained by two pyroxenes geothermometer, are about $951{\sim}1035^{\circ}C$ for Sunheul-ri spinel peridotite xenoliths and are similar to the range of equilibrium temperatures for the xenoliths from other sites in Jeju island. The period of entrainment and transport of the xenoliths in the host magma of Sunheul-ri mantle xenoliths is about 42 days.

Sr, Nd and Pb isotopic investigations of ultramafic xenoliths and their host basalts from Jeju Island, Baekryeong Island, Boeun and Ganseong, Korea: Implications for a large-scale difference in the source mantle beneath East Asia

  • Park, Seong-Hee;Kwon, Sung-Tack;Hee Sagong;Cheong, Chang-Sik
    • Proceedings of the Mineralogical Society of Korea Conference
    • /
    • 2001.06a
    • /
    • pp.75-75
    • /
    • 2001
  • We report Sr, Nd and Pb isotope data of clinopyroxene separates from ultramafic xenoliths and their host basaltic rocks in Jeju Island, Baekryeong Island, Boeun and Ganseong, Korea. The isotopic data of the xenoliths and host basalts are distinctly different from those of Korean basement rocks. Except for two xenoliths from Ganseong, all samples in this study have isotopic ratios within the combined range of MORB-OIB data. All basaltic rocks have Nd-Sr-Pb isotope compositions different from those of xenoliths, indicating that the host basaltic magma did not derive from the lithospheric mantle where the xenoliths originated. The range of isotopic composition of xenoliths is much greater than that observed in host basalts, which reflects small-scale heterogeneity of the lithospheric mantle. The greater isotopic heterogeneity of the lithospheric mantle probably reflects its long-term stability. The spinel peridotite xenolith data of Jeju Island, Baekryeong Island and Boeun display mixing hyperbolas between DMM and EM II end members. Since Jeju basalts have EM II-like isotopic signature, the mixing relationship shown by the isotopic data of the Jeju xenoliths can be interpreted as the result of infiltration of metasomatic fluid or melt derived from basaltic magma into DMM-like lithospheric mantle. In contrast to other xenolith sites, the Ganseong xenoliths are dominantly clinopyroxene megacryst and pyroxenite. Clinopyroxene megacrysts have different isotopic ratios from their host basalt, reflecting its exotic origin. Two Ganseong xenoliths (wherlite and clinopyroxenite) have much enriched Sr and Nd isotopic ratios and Nd model ages of 2.5-2.9 Ga, and plot in an array away from the MORB-OIB field. The mantle xenoliths from Korean Peninsula have similar $\^$87/Sr/$\^$86/Sr,$\^$143/Nd/$\^$144/Nd and $\^$207/Pb/$\^$204/Pb ratios to, but higher $\^$208/Pb/$\^$204/Pb ratios than, those from eastern China, indicating that Korean xenoliths are derived from the lithospheric mantle with higher Th/U ratio compared with Chinese ones. The isotopic data of xenolith-bearing basalts of Baekryeong Island and Ganseong, along with Ulreung and Dok Islands, show a mixing trend betlveen DMM and EM I in Sr-Nd-Pb isotopic correlation diagrams, which is also observed in tile northeastern Chinese basalts. However, the Jeju volcanic rocks show an EM II signature that is observed in southeastern Chinese basalts. The isotopic variations in volcanic rocks from the northern and southern portions of the East Asia reflect a large-scale isotopic heterogeneity in their source mantle.

  • PDF

Lithospheric Mantle beneath the Korean Peninsula: Implications from Peridotite Xenoliths in Alkali Basalts (우리나라 상부암석권 맨틀: 페리도타이트 포획암으로부터의 고찰)

  • Choi, Sung-Hi
    • The Journal of the Petrological Society of Korea
    • /
    • v.21 no.2
    • /
    • pp.235-247
    • /
    • 2012
  • Peridotite xenoliths hosted by alkali basalts from South Korea occur in Baengnyeong Island, Jeju Island, Boeun, Asan, Pyeongtaek and Ganseong areas. K-Ar whole-rock ages of the basaltic rocks range from 0.1 to 18.9 Ma. The peridotites are dominantly lherzolites and magnesian harzburgites, and the constituent minerals are Fo-rich olivine ($Fo_{88.4-92.0}$), En-rich orthopyroxene, Di-rich clinopyroxene, and Cr-rich spinel (Cr# = 7.8-53.6). Hydrous minerals, such as pargasite and phlogopite, or garnet have not been reported yet. The Korean peridotites are residues after variable degree of partial melting (up to 26%) and melt extraction from fertile MORB mantle. However, some samples (usually refractory harzburgites) exhibit metasomatic enrichment of the highly incompatible elements, such as LREE. Equilibration temperatures estimated using two-pyroxene geothermometry range from ca. 850 to $1050^{\circ}C$. Sr and Nd isotopic compositions in clinopyroxene separates from the Korean peridotites show trends between depleted MORB-like mantle (DMM) and bulk silicate earth (BSE), which can be explained by secondary metasomatic overprinting of a precursor time-integrated depleted mantle. The Korean peridotite clinopyroxenes define mixing trends between DMM and EM2 end members on Sr-Pb and Nd-Pb isotopic correlation diagrams, without any corresponding changes in the basement. This is contrary to what we observe in late Cenozoic intraplate volcanism in East Asia which shows two distinct mantle sources such as a DMM-EM1 array for NE China including Baengnyeong Island and a DMM-EM2 array for Southeast Asia including Jeju Island. This observation suggests the existence of large-scale two distinct mantle domains in the shallow asthenosphere beneath East Asia. The Re-Os model ages on Korean peridotites indicate that they have been isolated from convecting mantle between ca. 1.8 and 1.9 Ga.

Magma Pathway of Alkali Volcanic Rocks in Goseong, Gangwon-do, Korea (강원도 고성지역에 분포하는 알칼리 현무암질 마그마의 상승경로)

  • Kil, Young-Woo;Shin, Hong-Ja;Ko, Bo-Kyun
    • The Journal of the Petrological Society of Korea
    • /
    • v.16 no.4
    • /
    • pp.196-207
    • /
    • 2007
  • Miocene basalt plugs in Goseong contain a large variety of crustal and mantle xenoliths and xenocrysts. One of basalt plugs, Unbongsan, are derived from 160 km depth. Whole-rock geochemistry and pressure and temperature conditions of mineral phases indicate that Unbongsan volcanic rocks are alkali basalts and the source magma of the alkali basalts was generated from about $0.2{\sim}2%$ partial melting of depleted garnet peridotite. Crystallization pressures and temperatures of mineral phases within ascending magma of Unbongsan alkali basalt indicate that olivines, clinopyroxenes, and plagioclases were crystallized at $75{\sim}110km,\;40{\sim}52km,\;37{\sim}54km$ depth, respectively. The ascending magma of Unbongsan alkali basalts enclosed mantle xenoliths at about $57{\sim}67km$ depth.

Textural Implications of Fine-Grained Peridotite Xenoliths in Basaltic Rocks from Jeju Island (제주도 현무암에 포획된 세립질 맨틀 페리도타이트 포획암의 조직적 특성)

  • Yang, Kyoung-Hee;Nam, Bok-Hyun;Kim, Jin-Seop;Szabo, Csaba
    • Journal of the Mineralogical Society of Korea
    • /
    • v.22 no.1
    • /
    • pp.1-11
    • /
    • 2009
  • Fine-grained peridotite xenoliths are rarely trapped in the basaltic rocks from the southeastern part of Jeju Island. Based on textural characteristics of the constituent phases showing uniform-sized, fine-grained tabular to mosaic grains with rare porphyroclastic relics, the studied samples can be defined as fine-grained, foliated porphyroclastic peridotites (FPP). Almost no significant difference among the FPPs in textures and major element compositions implies that the FPPs were derived from a structural domain, experiencing similar deformation events and deformation patterns. Moreover, the bimodal distribution with kink-banded porphyroclasts ($2{\sim}3mm$) and stain-free neoblasts ($200{\sim}300{\mu}m$), straight to gently curved grain boundaries with triple junctions, interstitial melt pockets, and microstructures for migrating grain boundary suggest that the studied samples went through dynamic recrystallization (${\pm}$ static recrystallization) in the presence of melt/fluid movement along foliation planes. No notable difference between the FPP and common protogranular xenoliths in major element compositions and geochemical evolution also implies that the FPP and protogranular xenoliths were from a similar horizon. Thus, the textural and geochemical characteristics of the FPPs reflects deformation events occurred at a localized and narrow zone within the lithospheric mantle beneath the Jeju Island. Although further detailed studies are necessary to define deformation events, the most possible process which could trigger deformation in the FPP in the rigid upper mantle was the ascending basaltic magma forming high-stress deformation zones. The suggested high-stress deformation zones in the lithosphere beneath the Jeju Island may be produced by paleo-faulting events related to the ascent of basalt magma before Jeju Island was formed.

Petrology on the Late Miocene Basalts in Goseong-gun, Gangwon Province (강원도 고성군 일대의 후기 마이오세 현무암의 암석학적 연구)

  • Koh Jeong Seon;Yun Sung-Hyo
    • Journal of the Korean earth science society
    • /
    • v.26 no.1
    • /
    • pp.78-92
    • /
    • 2005
  • Petrographical and petrochemical analyses for late Miocene basalts in Goseong-gun area. Gangwon province, were carried out to interpret the characteristics and the origin of magma. The basaltic rocks occurred as plug-dome in the summit of several small mountain and developed columnar jointing with pyroxene-megacryst bearing porphyritic texture. And the basalt contains xenoliths of biotite granite (basement rocks), gabbro (lower crustal origin) and Iherzolite(upper mantle origin). The basalts belong to the alkaline basalt field in TAS diagram and partly belong to picrobasalt and trachybasalt field. On the tectonomagmatic discrimination diagram f3r basalt in the Goseong-gun area. they fall into the fields for the within plate and oceanic island basalt. The characteristics of trace elements and REEs shows that primary magma for the basalt magma would have been derived from partial melting of garnet-peridotite mantle. This late Miocene basalt volcanism is related to the hot spot within the palte.